961 resultados para Sorption equilibria
Resumo:
Solubilities of three primary amides, namely, acetanilide, propanamide, and butanamide, in supercritical carbon dioxide were measured at T = (308.2, 313.2, and 323.2) K over the pressure range (9.0 to 40.0) MPa by a flow type apparatus. The solubility behavior of the three solids shows an analogous trend with a crossover region of the respective isotherms between (12 to 14) MPa. The solubility of each amide, at the same temperature and pressure, decreases from propanamide to acetanilide. Pure compound properties required for the modeling were estimated, and the solubilities of the amides were correlated by using the Soave-Redlich-Kwong cubic equation of state with an absolute average relative deviation (AARD) from (1.3 to 6.1) %.
Resumo:
This research work has been focused in the study of gallinaceous feathers, a waste that may be valorised as sorbent, to remove the Dark Blue Astrazon 2RN (DBA) from Dystar. This study was focused on the following aspects: optimization of experimental conditions through factorial design methodology, kinetic studies into a continuous stirred tank adsorber (at pH 7 and 20ºC), equilibrium isotherms (at pH 5, 7 and 9 at 20 and 45ºC) and column studies (at 20ºC, at pH 5, 7 and 9). In order to evaluate the influence of the presence of other components in the sorption of the dyestuff, all experiments were performed both for the dyestuff in aqueous solution and in real textile effluent. The pseudo-first and pseudo-second order kinetic models were fitted to the experimental data, being the latter the best fit for the aqueous solution of dyestuff. For the real effluent both models fit the experimental results and there is no statistical difference between them. The Central Composite Design (CCD) was used to evaluate the effects of temperature (15 - 45ºC) and pH (5 - 9) over the sorption in aqueous solution. The influence of pH was more significant than temperature. The optimal conditions selected were 45ºC and pH 9. Both Langmuir and Freundlich models could fit the equilibrium data. In the concentration range studied, the highest sorbent capacity was obtained for the optimal conditions in aqueous solution, which corresponds to a maximum capacity of 47± 4 mg g-1. The Yoon-Nelson, Thomas and Yan’s models fitted well the column experimental data. The highest breakthrough time for 50% removal, 170 min, was obtained at pH 9 in aqueous solution. The presence of the dyeing agents in the real wastewater decreased the sorption of the dyestuff mostly for pH 9, which is the optimal pH. The effect of pH is less pronounced in the real effluent than in aqueous solution. This work shows that feathers can be used as sorbent in the treatment of textile wastewaters containing DBA.
Resumo:
Purpose: The sorption of sulfamethoxazole, a frequently detected pharmaceutical compound in the environment, onto walnut shells was evaluated. Methods: The sorption proprieties of the raw sorbent were chemically modified and two additional samples were obtained, respectively HCl and NaOH treated. Scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric (TG/DTG) techniques were applied to investigate the effect of the chemical treatments on the shell surface morphology and chemistry. Sorption experiments to investigate the pH effect on the process were carried out between pH 2 and 8. Results: The chemical treatment did not substantially alter the structure of the sorbent (physical and textural characteristics) but modified the surface chemistry of the sorbent (acid–base properties, point of zero charge—pHpzc). The solution pH influences both the sorbent’s surface charge and sulfamethoxazole speciation. The best removal efficiencies were obtained for lower pH values where the neutral and cationic sulfamethoxazole forms are present in the solution. Langmuir and Freundlich isotherms were applied to the experimental adsorption data for sulfamethoxazole sorption at pH 2, 4, and 7 onto raw walnut shell. No statistical difference was found between the two models except for the pH 2 experimental data to which the Freundlich model fitted better. Conclusion: Sorption of sulfamethoxazole was found to be highly pH dependent in the entire pH range studied and for both raw and treated sorbent.
Resumo:
The main objective of this study was to characterize the organic matter present in raw water and along the treatment process, as well as its seasonal variation. A natural organic matter fractionation approach has been applied to Lever water treatment plant located in Douro River, in Oporto (Portugal). The process used was based on the sorption of dissolved organic matter in different types of ion exchange resins, DAX-8, DAX-4 and IRA-958, allowing its separation into four fractions: very hydrophobic acids (VHA), slightly hydrophobic acids (SHA), charged hydrophilic (CHA) and hydrophilic neutral (NEU). The dissolved organic carbon (DOC) determination was used to quantify dissolved organic matter. Samples were collected monthly, during approximately one year, from raw water captured at the surface and under the bed of the river, and after each step of the treatment: pre-filtration in sand/anthracite filters, ozonation, coagulation/flocculation, counter current dissolved air flotation and filtration (CoCoDAFF) and chlorination. The NEU fraction showed a seasonal variation, with maximum values in autumn for the sampling points corresponding to raw water captured at the surface and under the bed of the river. It was usually the predominating fraction and did not show a significant decrease throughout the treatment. Nevertheless their low concentration, the same occurred for the CHA and VHA fractions. There was an overall decrease in the SHA fraction throughout the water treatment (especially after CoCoDAFF and ozonation) as well as in the DOC. The TSUVA254 values obtained for raw water generally varied between 2.0 and 4.0 L mgC-1 m-1 and between 0.75 and 1.78 L mgC-1 m-1 for treated water. It was observed a decrease of TSUVA values along the treatment, especially after ozonation. These results may contribute to a further optimization in the process of treating water for human consumption.
Resumo:
O tratamento de água para consumo humano tem por objectivos não só a sua qualidade em termos de parâmetros químicos e físicos, como também microbiológicos. Considerando que a MON pode afectar os sistemas de tratamento, a sua redução minimiza a formação de subprodutos de desinfecção, como por exemplo os trihalometanos e diminui o crescimento de microrganismos ao longo do sistema de distribuição. Nesse sentido tem havido recentemente uma grande evolução na investigação relativamente à remoção de matéria orgânica natural. O principal objectivo deste trabalho foi o de caracterizar a matéria orgânica presente na água bruta e ao longo do processo de tratamento, assim como a sua evolução sazonal. Os dados obtidos a partir desta caracterização poderão contribuir para uma futura optimização no processo de tratamento de águas de consumo. O processo utilizado baseou-se na sorção da matéria orgânica dissolvida em diferentes tipos de resinas de permuta iónica, DAX-8, DAX-4 e IRA-958, permitindo a sua separação em várias fracções: ácidos muito hidrofóbicos (VHA), ácidos ligeiramente hidrofóbicos (SHA), compostos hidrofílicos carregados (CHA) e hidrofílicos neutros (NEU). De acordo com os resultados obtidos apenas a fracção NEU demonstrou ter uma tendência sazonal, apresentando valores máximos no Verão, nos pontos de amostragem referentes à água bruta superficial (PA802) e água bruta superficial após pré-tratamento por filtração (PA800). Os valores de COD não mostraram uma variação sazonal para as amostras de água bruta superficial que rondaram os 2 mg C/L ao longo do período de amostragem (Julho a Outubro), durante o qual se verificou uma baixa pluviosidade e temperaturas médias muito semelhantes. Os compostos NEU predominam em todos os pontos de amostragem não apresentando uma tendência definida ao longo do tratamento. Observou-se uma diminuição das fracções SHA e CHA ao longo do tratamento. Não se pode indicar uma tendência definida relativamente à fracção VHA. Verifica-se globalmente uma diminuição do teor de MON ao longo do tratamento. Este trabalho demonstrou que na água bruta superficial existe uma predominância dos compostos NEU, seguidos dos SHA, dos VHA e finalmente dos compostos CHA. Na água bruta captada no sub-leito do rio, verifica-se apenas a existência dos compostos NEU, sendo as restantes fracções praticamente nulas. Os valores mais elevados de TSUVA254nm foram obtidos para as amostras que não sofreram qualquer tratamento, água bruta do sub-leito (PA903) e superficial (PA802), e água bruta após pré-filtração (PA800). Nos restantes pontos de amostragem, apesar de se verificarem valores inferiores, não se observa uma diminuição deste parâmetro ao longo do tratamento, nem uma variação sazonal. Os valores de TSUVA254nm obtidos são geralmente inferiores a 3 L.mgC-1.m-1, correspondendo a materiais não húmicos, que são considerados biodegradáveis. Para as amostras de água tratada os valores oscilam entre os 1,23 e 1,58 L.mgC-1.m-1, valores inferiores a 2 L.mgC-1.m-1, o que é considerado um valor de referência ao nível do tratamento, segundo a USEPA.
Resumo:
The main goal of this research study was the removal of Cu(II), Ni(II) and Zn(II) from aqueous solutions using peanut hulls. This work was mainly focused on the following aspects: chemical characterization of the biosorbent, kinetic studies, study of the pH influence in mono-component systems, equilibrium isotherms and column studies, both in mono and tri-component systems, and with a real industrial effluent from the electroplating industry. The chemical characterization of peanut hulls showed a high cellulose (44.8%) and lignin (36.1%) content, which favours biosorption of metal cations. The kinetic studies performed indicate that most of the sorption occurs in the first 30 min for all systems. In general, a pseudo-second order kinetics was followed, both in mono and tri-component systems. The equilibrium isotherms were better described by Freundlich model in all systems. Peanut hulls showed higher affinity for copper than for nickel and zinc when they are both present. The pH value between 5 and 6 was the most favourable for all systems. The sorbent capacity in column was 0.028 and 0.025 mmol g-1 for copper, respectively in mono and tri-component systems. A decrease of capacity for copper (50%) was observed when dealing with the real effluent. The Yoon-Nelson, Thomas and Yan’s models were fitted to the experimental data, being the latter the best fit.
Resumo:
A Box–Behnken factorial design coupled with surface response methodology was used to evaluate the effects of temperature, pH and initial concentration in the Cu(II) sorption process onto the marine macroalgae Ascophyllum nodosum. The effect of the operating variables on metal uptake capacitywas studied in a batch system and a mathematical model showing the influence of each variable and their interactions was obtained. Study ranges were 10–40ºC for temperature, 3.0–5.0 for pH and 50–150mgL−1 for initial Cu(II) concentration. Within these ranges, the biosorption capacity is slightly dependent on temperature but markedly increases with pH and initial concentration of Cu(II). The uptake capacities predicted by the model are in good agreement with the experimental values. Maximum biosorption capacity of Cu(II) by A. nodosum is 70mgg−1 and corresponds to the following values of those variables: temperature = 40ºC, pH= 5.0 and initial Cu(II) concentration = 150mgL−1.
Resumo:
This research work aims to study the use of peanut hulls, an agricultural and food industry waste, for copper and lead removal through equilibrium and kinetic parameters evaluation. Equilibrium batch studies were performed in a batch adsorber. The influence of initial pH was evaluated (3–5) and it was selected between 4.0 and 4.5. The maximum sorption capacities obtained for the Langmuir model were 0.21 ± 0.03 and 0.18 ± 0.02 mmol/g, respectively for copper and lead. In bi-component systems, competitive sorption of copper and lead was verified, the total amount adsorbed being around 0.21 mmol of metal per gram of material in both mono and bi-component systems. In the kinetic studies equilibrium was reached after 200 min contact time using a 400 rpm stirring rate, achieving 78% and 58% removal, in mono-component system, for copper and lead respectively. Their removal follows a pseudo-second-order kinetics. These studies show that most of the metals removal occurred in the first 20 min of contact, which shows a good uptake rate in all systems.
Resumo:
This work reports a relatively rapid procedure for the forecasting of the remediation time (RT) of sandy soils contaminated with cyclohexane using vapour extraction. The RT estimated through the mathematical fitting of experimental results was compared with that of real soils. The main objectives were: (i) to predict the RT of soils with natural organic matter (NOM) and water contents different from those used in experiments; and (ii) to analyse the time and efficiency of remediation, and the distribution of contaminants into the soil matrix after the remediation process, according to the soil contents of: (ii1) NOM; and (ii2) water. For sandy soils with negligible clay contents, artificially contaminated with cyclohexane before vapour extraction, it was concluded that: (i) if the NOM and water contents belonged to the range of the prepared soils, the RT of real soils could be predicted with relative differences not higher than 12%; (ii1) the increase of NOM content from 0% to 7.5% increased the RT (1.8–13 h) and decreased the remediation efficiency (RE) (99–90%) and (ii2) the increase of soil water content from 0% to 6% increased the RT (1.8–4.9 h) and decreased the RE (99–97%). NOM increases the monolayer capacity leading to a higher sorption into the solid phase. Increasing of soil water content reduces the mass transfer coefficient between phases. Concluding, NOM and water contents influence negatively the remediation process, turning it less efficient and more time consuming, and consequently more expensive.
Resumo:
In life cycle impact assessment (LCIA) models, the sorption of the ionic fraction of dissociating organic chemicals is not adequately modeled because conventional non-polar partitioning models are applied. Therefore, high uncertainties are expected when modeling the mobility, as well as the bioavailability for uptake by exposed biota and degradation, of dissociating organic chemicals. Alternative regressions that account for the ionized fraction of a molecule to estimate fate parameters were applied to the USEtox model. The most sensitive model parameters in the estimation of ecotoxicological characterization factors (CFs) of micropollutants were evaluated by Monte Carlo analysis in both the default USEtox model and the alternative approach. Negligible differences of CFs values and 95% confidence limits between the two approaches were estimated for direct emissions to the freshwater compartment; however the default USEtox model overestimates CFs and the 95% confidence limits of basic compounds up to three orders and four orders of magnitude, respectively, relatively to the alternative approach for emissions to the agricultural soil compartment. For three emission scenarios, LCIA results show that the default USEtox model overestimates freshwater ecotoxicity impacts for the emission scenarios to agricultural soil by one order of magnitude, and larger confidence limits were estimated, relatively to the alternative approach.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia
Resumo:
The article reports density measurements of dipropyl (DPA), dibutyl (DBA) and bis(2-ethylhexyl) (DEHA) adipates, using a vibrating U-tube densimeter, model DMA HP, from Anton Paar GmbH. The measurements were performed in the temperature range (293 to 373) K and at pressures up to about 68 MPa, except for DPA for which the upper limits were 363 K and 65 MPa, respectively. The density data for each liquid was correlated with the temperature and pressure using a modified Tait equation. The expanded uncertainty of the present density results is estimated as 0.2% at a 95% confidence level. No literature density data at pressures higher than 0.1 MPa could be found. DEHA literature data at atmospheric pressure agree with the correlation of the present measurements, in the corresponding temperature range, within +/- 0.11%. The isothermal compressibility and the isobaric thermal expansion were calculated by differentiation of the modified Tait correlation equation. These two parameters were also calculated for dimethyl adipate (DMA), from density data reported in a previous work. The uncertainties of isothermal compressibility and the isobaric thermal expansion are estimated to be less than +/- 1.7% and +/- 1.1%, respectively, at a 95% confidence level. Literature data of isothermal compressibility and isobaric thermal expansivity for DMA have an agreement within +/- 1% and +/- 2.4%, respectively, with results calculated in this work. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
No literature data above atmospheric pressure could be found for the viscosity of TOTIVI. As a consequence, the present viscosity results could only be compared upon extrapolation of the vibrating wire data to 0.1 MPa. Independent viscosity measurements were performed, at atmospheric pressure, using an Ubbelohde capillary in order to compare with the vibrating wire results, extrapolated by means of the above mentioned correlation. The two data sets agree within +/- 1%, which is commensurate with the mutual uncertainty of the experimental methods. Comparisons of the literature data obtained at atmospheric pressure with the present extrapolated vibrating-wire viscosity measurements have shown an agreement within +/- 2% for temperatures up to 339 K and within +/- 3.3% for temperatures up to 368 K. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
In Part I of the present work we describe the viscosity measurements performed on tris(2-ethylhexyl) trimellitate or 1,2,4-benzenetricarboxylic acid, tris(2-ethylhexyl) ester (TOTM) up to 65 MPa and at six temperatures from (303 to 373)K, using a new vibrating-wire instrument. The main aim is to contribute to the proposal of that liquid as a potential reference fluid for high viscosity, high pressure and high temperature. The present Part II is dedicated to report the density measurements of TOTM necessary, not only to compute the viscosity data presented in Part I, but also as complementary data for the mentioned proposal. The present density measurements were obtained using a vibrating U-tube densimeter, model DMA HP, using model DMA5000 as a reading unit, both instruments from Anton Paar GmbH. The measurements were performed along five isotherms from (293 to 373)K and at eleven different pressures up to 68 MPa. As far as the authors are aware, the viscosity and density results are the first, above atmospheric pressure, to be published for TOTM. Due to TOTM's high viscosity, its density data were corrected for the viscosity effect on the U-tube density measurements. This effect was estimated using two Newtonian viscosity standard liquids, 20 AW and 200 GW. The density data were correlated with temperature and pressure using a modified Tait equation. The expanded uncertainty of the present density results is estimated as +/- 0.2% at a 95% confidence level. Those results were correlated with temperature and pressure by a modified Tait equation, with deviations within +/- 0.25%. Furthermore, the isothermal compressibility, K-T, and the isobaric thermal expansivity, alpha(p), were obtained by derivation of the modified Tait equation used for correlating the density data. The corresponding uncertainties, at a 95% confidence level, are estimated to be less than +/- 1.5% and +/- 1.2%, respectively. No isobaric thermal expansivity and isothermal compressibility for TOTM were found in the literature. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We investigate the structural and thermodynamic properties of a model of particles with 2 patches of type A and 10 patches of type B. Particles are placed on the sites of a face centered cubic lattice with the patches oriented along the nearest neighbor directions. The competition between the self- assembly of chains, rings, and networks on the phase diagram is investigated by carrying out a systematic investigation of this class of models, using an extension ofWertheim's theory for associating fluids and Monte Carlo numerical simulations. We varied the ratio r epsilon(AB)/epsilon(AA) of the interaction between patches A and B, epsilon(AB), and between A patches, epsilon(AA) (epsilon(BB) is set to theta) as well as the relative position of the A patches, i.e., the angle. between the (lattice) directions of the A patches. We found that both r and theta (60 degrees, 90 degrees, or 120 degrees) have a profound effect on the phase diagram. In the empty fluid regime (r < 1/2) the phase diagram is reentrant with a closed miscibility loop. The region around the lower critical point exhibits unusual structural and thermodynamic behavior determined by the presence of relatively short rings. The agreement between the results of theory and simulation is excellent for theta = 120 degrees but deteriorates as. decreases, revealing the need for new theoretical approaches to describe the structure and thermodynamics of systems dominated by small rings. (C) 2014 AIP Publishing LLC.