932 resultados para Sorghum -- Biotechnology
Resumo:
Biodiversity is threatened by agriculture as a whole, and particularly also by traditional methods of agriculture. Knowledge-based agriculture, including GM crops, can reduce this threat in the future. The introduction of no-tillage practices, which are beneficial for soil fertility, has been encouraged by the rapid spread of herbicide-tolerant soybeans in the USA. The replacement of pesticides through Bt crops is advantageous for the non-target insect fauna in test-fields. The results of the British Farm Scale experiment are discussed. Biodiversity differences can mainly be referred to as differences in herbicide application management.
Resumo:
Over the past decade the topic of genetic engineering has been has been readily debated in the media, but often these debates consist of political rhetoric and fail to offer objective information on the methods and the potential benefits to human health and their environment. In truth, humans have been manipulating the genomes of organisms for thousands of years, and it has been an evolution of scientific knowledge that has led to the more precise methods of genetic engineering. This paper discusses how scientists utilize natural processes to alter the genetic constituents of both prokaryotic and eukaryotic organisms, benefits to human health and the environment, as well as potential misuses of biotechnology such as bioterrorism.
Resumo:
Von Dr. Walter Busse
Resumo:
Podredumbre del tallo y la raíz del sorgo causada por Fusarium verticillioides en España
Resumo:
Spain’s economy recorded a high rate of growth from the mid-1990s onwards. At the same time, the resources allocated to Research and Development (R&D) grew at a much faster pace than in other European Union (EU) countries. Spain’s growth recorded an average rate of 2.93% from the early 1990s to 2004. Over the same period, the average growth in the EU was 0.46%. This circumstance, together with several sound policy decisions implemented between 2004 and 2009, ushered in a “golden age of Spanish biotechnology”. In terms of the national patent licenses issued by the Spanish Patent and Trademark Office (SPTO) between 2004 and 2009, the number in biotechnology grew from 84 to 151. However, the current economic situation in Spain, along with a series of political decisions taken over the past two or three years to cut spending on R&D, predicts a sharp downturn in the performance of Spanish biotechnology. This scenario makes Spain one of the best places to study the successes and failures of the management of science and allows transfer this experience to the other international regions. We need to analyze the influence of political decisions as a major factor with a bearing on the quality of science. Using patents as an indicator of scientific development, this paper analyzes the evolution of the biotechnology sector in Spain and its relationship with scientific policy and the management of R&D.
Resumo:
La presente investigación tuvo como objetivo evaluar el rendimiento y riesgo que presenta la cartera de fincas productoras de sorgo, en los estados Portuguesa y Barinas (Venezuela), adscritas al Programa de Extensión Agrícola Italven S. A. (PEAISA). La muestra fue conformada por 39 fincas localizadas en tres municipios del estado Portuguesa y 72 fincas ubicadas en siete municipios del estado Barinas. En todas se produjo sorgo, a la salida de lluvias, durante 2006. Se consideraron las variables estado, municipio, área cosechada, híbridos cultivados, rendimiento y coeficiente de variación (riesgo). Se empleó distribución de frecuencias de la superficie cosechada de sorgo por finca para medir la concentración de la cartera y se realizaron comparaciones de promedio de rendimiento con las pruebas de t de student y de Tukey, además se utilizó la curva normal para determinar probabilidades de rendimiento. Entre los resultados más importantes destacan: 1) La cartera del PEAISA, conformada por fincas pequeñas y medianas, no presenta riesgo de concentración en un determinado segmento de tamaño, pero la producción total está concentrada (81,2%) en el estado Barinas, 2) Aunque se ubicó en la media nacional, se logró un mayor rendimiento promedio/ha de sorgo en el estado Barinas en comparación con Portuguesa, con riesgo de explotación similar en ambos estados, 3) El híbrido de sorgo Tecsen 120 igualó al Chaguarama VII, pero superó en rendimiento al Himeca 101, híbrido que pudiera ser descartado de la cartera por su bajo rendimiento y mayor riesgo de explotación. Esta información se analizó adicionalmente con una matriz denominada productividad-riesgo, que fue un desarrollo original de este trabajo.
Resumo:
RNA editing and cytoplasmic male sterility are two important phenomena in higher plant mitochondria. To determine whether correlations might exist between the two, RNA editing in different tissues of Sorghum bicolor was compared employing reverse transcription–PCR and subsequent sequence analysis. In etiolated shoots, RNA editing of transcripts of plant mitochondrial atp6, atp9, nad3, nad4, and rps12 genes was identical among fertile or cytoplasmic male sterile plants. We then established a protocol for mitochondrial RNA isolation from plant anthers and pollen to include in these studies. Whereas RNA editing of atp9, nad3, nad4, and rps12 transcripts in anthers was similar to etiolated shoots, mitochondrial atp6 RNA editing was strongly reduced in anthers of the A3Tx398 male sterile line of S. bicolor. atp6 transcripts of wheat and selected plastid transcripts in S. bicolor showed normal RNA editing, indicating that loss of atp6 RNA editing is specific for cytoplasmic male sterility S. bicolor mitochondria. Restoration of fertility in F1 and F2 lines correlated with an increase in RNA editing of atp6 transcripts. Our data suggest that loss of atp6 RNA editing contributes to or causes cytoplasmic male sterility in S. bicolor. Further analysis of the mechanism of cell type-specific loss of atp6 RNA editing activity may advance our understanding of the mechanism of RNA editing.
Resumo:
Accumulation of red phlobaphene pigments in sorghum grain pericarp is under the control of the Y gene. A mutable allele of Y, designated as y-cs (y-candystripe), produces a variegated pericarp phenotype. Using probes from the maize p1 gene that cross-hybridize with the sorghum Y gene, we isolated the y-cs allele containing a large insertion element. Our results show that the Y gene is a member of the MYB-transcription factor family. The insertion element, named Candystripe1 (Cs1), is present in the second intron of the Y gene and shares features of the CACTA superfamily of transposons. Cs1 is 23,018 bp in size and is bordered by 20-bp terminal inverted repeat sequences. It generated a 3-bp target site duplication upon insertion within the Y gene and excised from y-cs, leaving a 2-bp footprint in two cases analyzed. Reinsertion of the excised copy of Cs1 was identified by Southern hybridization in the genome of each of seven red pericarp revertant lines tested. Cs1 is the first active transposable element isolated from sorghum. Our analysis suggests that Cs1-homologous sequences are present in low copy number in sorghum and other grasses, including sudangrass, maize, rice, teosinte, and sugarcane. The low copy number and high transposition frequency of Cs1 imply that this transposon could prove to be an efficient gene isolation tool in sorghum.
Comparative mapping of Andropogoneae: Saccharum L. (sugarcane) and its relation to sorghum and maize
Resumo:
Comparative genetic maps of Papuan Saccharum officinarum L. (2n = 80) and S. robustum (2n = 80) were constructed by using single-dose DNA markers (SDMs). SDM-framework maps of S. officinarum and S. robustum were compared with genetic maps of sorghum and maize by way of anchor restriction fragment length polymorphism probes. The resulting comparisons showed striking colinearity between the sorghum and Saccharum genomes. There were no differences in marker order between S. officinarum and sorghum. Furthermore, there were no alterations in SDM order between S. officinarum and S. robustum. The S. officinarum and S. robustum maps also were compared with the map of the polysomic octoploid S. spontaneum ‘SES 208’ (2n = 64, x = 8), thus permitting relations to homology groups (“chromosomes”) of S. spontaneum to be studied. Investigation of transmission genetics in S. officinarum and S. robustum confirmed preliminary results that showed incomplete polysomy in these species. Because of incomplete polysomy, multiple-dose markers could not be mapped for lack of a genetic model for their segregation. To coalesce S. officinarum and S. robustum linkage groups into homology groups (composed of homologous pairing partners), they were compared with sorghum (2n = 20), which functioned as a synthetic diploid. Groupings suggested by comparative mapping were found to be highly concordant with groupings based on highly polymorphic restriction fragment length polymorphism probes detecting multiple SDMs. The resulting comparative maps serve as bridges to allow information from one Andropogoneae to be used by another, for breeding, ecology, evolution, and molecular biology.
Resumo:
The endosperm of a sorghum mutant cultivar, with high in vitro uncooked and cooked protein digestibilities, was examined by transmission electron microscopy and α-, β-, and γ-kafirins (storage proteins) were localized within its protein bodies. Transmission electron microscopy micrographs revealed that these protein bodies had a unique microstructure related to high protein digestibility. They were irregular in shape and had numerous invaginations, often reaching to the central area of the protein body. Protein bodies from normal cultivars, such as P721N studied here, with much lower uncooked and cooked digestibilities are spherical and contain no invaginations. Immunocytochemistry results showed that the relative location of α- and β-kafirins within the protein bodies of the highly digestible genotype were similar to the normal cultivar, P721N. γ-Kafirin, however, was concentrated in dark-staining regions at the base of the folds instead of at the protein body periphery, as is typical of normal cultivars. The resulting easy accessibility of digestive enzymes to α-kafirin, the major storage protein, in addition to the increased surface area of the protein bodies of the highly digestible cultivar appear to account for its high in vitro protein digestibility.
Resumo:
In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides data analysis and retrieval resources that operate on the data in GenBank and a variety of other biological data made available through NCBI’s Web site. NCBI data retrieval resources include Entrez, PubMed, LocusLink and the Taxonomy Browser. Data analysis resources include BLAST, Electronic PCR, OrfFinder, RefSeq, UniGene, HomoloGene, Database of Single Nucleotide Polymorphisms (dbSNP), Human Genome Sequencing, Human MapViewer, GeneMap’99, Human–Mouse Homology Map, Cancer Chromosome Aberration Project (CCAP), Entrez Genomes, Clusters of Orthologous Groups (COGs) database, Retroviral Genotyping Tools, Cancer Genome Anatomy Project (CGAP), SAGEmap, Gene Expression Omnibus (GEO), Online Mendelian Inheritance in Man (OMIM), the Molecular Modeling Database (MMDB) and the Conserved Domain Database (CDD). Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of the resources can be accessed through the NCBI home page at: http://www.ncbi.nlm.nih.gov.
Resumo:
Mutant sorghum (Sorghum bicolor [L.] Moench) deficient in functional phytochrome B exhibits reduced photoperiodic sensitivity and constitutively expresses a shade-avoidance phenotype. Under relatively bright, high red:far-red light, ethylene production by seedlings of wild-type and phytochrome B-mutant cultivars progresses through cycles in a circadian rhythm; however, the phytochrome B mutant produces ethylene peaks with approximately 10 times the amplitude of the wild type. Time-course northern blots show that the mutant's abundance of the 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase mRNA SbACO2 is cyclic and is commensurate with ethylene production, and that ACC oxidase activity follows the same pattern. Both SbACO2 abundance and ACC oxidase activity in the wild-type plant are very low under this regimen. ACC levels in the two cultivars did not demonstrate fluctuations coincident with the ethylene produced. Simulated shading caused the wild-type plant to mimic the phenotype of the mutant and to produce high amplitude rhythms of ethylene evolution. The circadian feature of the ethylene cycle is conditionally present in the mutant and absent in the wild-type plant under simulated shading. SbACO2 abundance in both cultivars demonstrates a high-amplitude diurnal cycle under these conditions; however, ACC oxidase activity, although elevated, does not exhibit a clear rhythm correlated with ethylene production. ACC levels in both cultivars show fluctuations corresponding to the ethylene rhythm previously observed. It appears that at least two separate mechanisms may be involved in generating high-amplitude ethylene rhythms in sorghum, one in response to the loss of phytochrome B function and another in response to shading.
Resumo:
The most productive (“star”) bioscientists had intellectual human capital of extraordinary scientific and pecuniary value for some 10–15 years after Cohen and Boyer’s 1973 founding discovery for biotechnology [Cohen, S., Chang, A., Boyer, H. & Helling, R. (1973) Proc. Natl. Acad. Sci. USA 70, 3240–3244]. This extraordinary value was due to the union of still scarce knowledge of the new research techniques and genius and vision to apply them in novel, valuable ways. As in other sciences, star bioscientists were very protective of their techniques, ideas, and discoveries in the early years of the revolution, tending to collaborate more within their own institution, which slowed diffusion to other scientists. Close, bench-level working ties between stars and firm scientists were needed to accomplish commercialization of the breakthroughs. Where and when star scientists were actively producing publications is a key predictor of where and when commercial firms began to use biotechnology. The extent of collaboration by a firm’s scientists with stars is a powerful predictor of its success: for an average firm, 5 articles coauthored by an academic star and the firm’s scientists result in about 5 more products in development, 3.5 more products on the market, and 860 more employees. Articles by stars collaborating with or employed by firms have significantly higher rates of citation than other articles by the same or other stars. The U.S. scientific and economic infrastructure has been particularly effective in fostering and commercializing the bioscientific revolution. These results let us see the process by which scientific breakthroughs become economic growth and consider implications for policy.
Resumo:
The development of improved technology for agricultural production and its diffusion to farmers is a process requiring investment and time. A large number of studies of this process have been undertaken. The findings of these studies have been incorporated into a quantitative policy model projecting supplies of commodities (in terms of area and crop yields), equilibrium prices, and international trade volumes to the year 2020. These projections show that a “global food crisis,” as would be manifested in high commodity prices, is unlikely to occur. The same projections show, however, that in many countries, “local food crisis,” as manifested in low agricultural incomes and associated low food consumption in the presence of low food prices, will occur. Simulations show that delays in the diffusion of modern biotechnology research capabilities to developing countries will exacerbate local food crises. Similarly, global climate change will also exacerbate these crises, accentuating the importance of bringing strengthened research capabilities to developing countries.
Resumo:
While the last 50 years of agriculture have focused on meeting the food, feed, and fiber needs of humans, the challenges for the next 50 years go far beyond simply addressing the needs of an ever-growing global population. In addition to producing more food, agriculture will have to deal with declining resources like water and arable land, need to enhance nutrient density of crops, and achieve these and other goals in a way that does not degrade the environment. Biotechnology and other emerging life sciences technologies offer valuable tools to help meet these multidimensional challenges. This paper explores the possibilities afforded through biotechnology in providing improved agronomic “input” traits, differentiated crops that impart more desirable “output” traits, and using plants as green factories to fortify foods with valuable nutrients naturally rather than externally during food processing. The concept of leveraging agriculture as green factories is expected to have tremendous positive implications for harnessing solar energy to meet fiber and fuel needs as well. Widespread adaptation of biotech-derived products of agriculture should lay the foundation for transformation of our society from a production-driven system to a quality and utility-enhanced system.