945 resultados para Somatic Support Cells
Resumo:
4HPR is a synthetic retinoid that has shown chemopreventive and therapeutic efficacy against premalignant and malignant lesions including oral leukoplakia, ovarian and breast cancer, and neuroblastoma. 4HPR induces apoptosis in various cancer cells and production of reactive oxygen species (ROS) has been suggested as a possible cause underlying these effects. However, the mechanisms governing these effects by 4HPR are not fully elucidated. In this study, we explored the mechanisms of 4HPR-induced ROS increase and apoptosis in human cancer cells. ^ First, we identified genes modulated by 4HPR using oligonucleotide gene expression arrays and found that they fall into specific functional canonical pathways and gene networks using Ingenuity Pathways Analysis®. Further analysis has shown that 4HPR induced up-regulation of Endoplasmic Reticulum (ER)-related genes such as Heat shock proteins 70 and 90 and the transcriptional factor, GADD153. These findings were validated using quantitative real-time PCR. ^ Second, we found that 4HPR induced extensive ER stress evidenced by dilation of the ER and endoribonuclease-mediated splicing and activation of the transcriptional factor, XBP-1. In addition, 4HPR induced the up-regulation of various ER stress-related genes and their protein products, as well as cleavage and activation of the ER specific Caspase-4. Concomitantly with XBP-1 splicing, all of these effects were dependent on ROS generation by 4HPR. Furthermore, chemical inhibition and RNA interference studies revealed a novel pro-apoptotic role for HSP70/A1A in 4HPR-mediated apoptosis. ^ Third, we observed rapid activation of the small GTPase Rac by 4HPR which was upstream of ROS generation. Inhibition of Rac activity or silencing of its expression by RNA interference inhibited ROS generation and apoptosis induction by 4HPR. siRNA targeting PAK1 and expression of a dominant negative Rac, decreased 4HPR-mediated ROS generation, while expression of a constitutive active Rac increased basal and 4HPR-induced ROS generation and PARP cleavage. Furthermore, metastatic cancer cells exhibited higher Rac activation, ROS generation, and cell growth inhibition due to 4HPR exposure compared to their primary cancer cell counterparts. ^ These findings provide novel insights into 4HPR-mediated ROS generation and apoptosis induction and support the use of ROS inducing agents such as 4HPR against metastatic cancer cells. ^
Resumo:
In the rabbit retina, there are two kinds of horizontal cells (HCs). The A-type HC is a large axonless cell which contacts cones exclusively. The B-type HC is an axon bearing cell. While the somatic dendrites of B-type HCs also contact cones, the axon expands into an elaborately branched structure, the axon terminal (AT), which contacts a large number of rods. It is difficult to label the different HCs selectively by immunochemical methods. Therefore, we developed dye injection methods to label each type of HC. Then it was possible, (1) to describe the detailed structure of the AT (2) to identify the glutamate receptors mediating cone input to A and B-type HCs and rod input to ATs and (3) to test the hypothesis that the B-type HCs are coupled via Cx57 gap junctions. ^ To obtain well filled examples of single HCs, it was necessary to block gap junction coupling to stop the spread of Neurobiotin through the network. We used dye coupling in A-type HCs to screen a series of potential gap junction antagonists. One of these compounds, meclofenamic acid (MFA), was potent, water soluble and easily reversible. This compound may be a useful tool to manipulate gap junction coupling. ^ In the presence of MFA, Neurobiotin passed down the axon of B-type HCs to reveal the detailed structure of the AT. We observed that only one AT ending entered each rod spherule invagination. This observation was confirmed by calculation and two dye injections. ^ Glutamate is the neurotransmitter used by both rods and cones. AMPA receptors were colocalized with the dendrites of A and B-type HCs at each cone pedicle. In addition, AMPA receptors were located on the AT ending at each rod spherule. Thus rod and cone input to HCs is mediated by AMPA receptors. ^ A-type and B-type HCs may express different connexins because they have different dye-coupling properties. Recently, we found that connexin50 (Cx50) is expressed by A-type HCs. B-type HCs and B-type ATs are also independently coupled. Cx57 was expressed in the OPL and double label studies showed that Cx 57 was colocalized with the AT matrix but not with the somatic dendrites of B-type HCs. ^ In summary, we have identified a useful gap junction antagonist, MFA. There is one AT ending at each rod spherule, rods inputs to ATs is mediated by AMPA receptors and coupling in the AT matrix is mediated by Cx57. This confirms that HCs with different properties use distinct connexins. The properties of ATs described in this research are consistent. The connections and properties reported here suggest that ATs functions as rod HCs and provide a negative feedback signal to rods. ^
Resumo:
Bone marrow (BM) stromal cells are ascribed two key functions, 1) stem cells for non-hematopoietic tissues (MSC) and 2) as components of the hematopoietic stem cell niche. Current approaches studying the stromal cell system in the mouse are complicated by the low yield of clonogenic progenitors (CFU-F). Given the perivascular location of MSC in BM, we developed an alternative methodology to isolate MSC from mBM. An intact ‘plug’ of bone marrow is expelled from bones and enzymatically disaggregated to yield a single cell suspension. The recovery of CFU-F (1917.95+199) reproducibly exceeds that obtained using the standard BM flushing technique (14.32+1.9) by at least 2 orders of magnitude (P<0.001; N = 8) with an accompanying 196-fold enrichment of CFU-F frequency. Purified BM stromal and vascular endothelial cell populations are readily obtained by FACS. A detailed immunophenotypic analysis of lineage depleted BM identified PDGFRαβPOS stromal cell subpopulations distinguished by their expression of CD105. Both subpopulations retained their original phenotype of CD105 expression in culture and demonstrate MSC properties of multi-lineage differentiation and the ability to transfer the hematopoietic microenvironment in vivo. To determine the capacity of either subpopulation to support long-term multi-lineage reconstituting HSCs, we fractionated BM stromal cells into either the LinNEGPDGFRαβPOSCD105POS and LINNEGPDGFRαβPOSCD105LOW/- populations and tested their capacity to support LT-HSC by co-culturing each population with either 1 or 10 HSCs for 10 days. Following the 10 day co-culture period, both populations supported transplantable HSCs from 10 cells/well co-cultures demonstrating high levels of donor repopulation with an average of 65+23.6% chimerism from CD105POS co-cultures and 49.3+19.5% chimerism from the CD105NEG co-cultures. However, we observed a significant difference when mice were transplanted with the progeny of a single co-cultured HSC. In these experiments, CD105POS co-cultures (100%) demonstrated long-term multi- lineage reconstitution, while only 4 of 8 mice (50%) from CD105NEG -single HSC co-cultures demonstrated long-term reconstitution, suggesting a more limited expansion of functional stem cells. Taken together, these results demonstrate that the PDGFRαβCD105POS stromal cell subpopulation is distinguished by a unique capacity to support the expansion of long-term reconstituting HSCs in vitro.
Resumo:
Cellular therapies, as neuronal progenitor (NP) cells grafting, are promising therapies for patients affected with neurodegenerative diseases like Creutzfeldt-Jakob Disease (CJD). At this time there is no effective treatment or cure for CJD. The disease is inevitably fatal and affected people usually die within months of the appearance of the first clinical symptoms. Compelling evidence indicate that the hallmark event in the disease is the conversion of the normal prion protein (termed PrPC) into the disease-associated, misfolded form (called PrPSc). Thus, a reasonable therapeutic target would be to prevent PrP misfolding and prion replication. This strategy has been applied with poor results since at the time of clinical intervention substantial brain damage has been done. It seems that a more effective treatment aimed at patients with established symptoms of CJD would need to stop further brain degeneration or even recover some of the previously lost brain tissue. The most promising possibility to recover brain tissue is the use of NPs that have the potential to replenish the nerve cells lost during the early stages of the disease. Advanced cellular therapies, beside their potential for cell replacement, might be used as biomaterials for drug delivery in order to stimulate cell survival or the resolution the disease. Also, implanted cells can be genetically manipulated to correct abnormalities causing disease or to make them more resistant to the toxic microenvironments present in damaged tissue. In recent years cell engineering has been within the scope of the scientific and general community after the development of technologies able to “de-differentiate” somatic cells into induced-pluripotent stem (IPS) cells. This new tool permits the use of easy-to-reach cells like skin or blood cells as a primary material to obtain embryonic stem-like cells for cellular therapies, evading all ethical issues regarding the use of human embryos as a source of embryonic stem cells. The complete work proposes to implant IPS-derived NP cells into the brain of prion-infected animals to evaluate their therapeutic potential. Since it is well known that the expression of prion protein in the cell membrane is necessary for PrPSc mediated toxicity, we also want to determine if NPs lacking the prion protein have better survival rates once implanted into sick animals. The main objective of this work is to develop implantable neural precursor from IPS coming from animals lacking the prion protein. Specific aim 1: To develop and characterize cellular cultures of IPS cells from prp-/- mice. Fibroblasts from prp-/- animals will be reprogrammed using the four Yamanaka factors. IPS colonies will be selected and characterized by immunohistochemistry for markers of pluripotency. Their developmental capabilities will be evaluated by teratoma and embryoid body formation assays. Specific aim 2: To differentiate IPS cells to a neuronal lineage. IPS cells will be differentiated to a NP stage by the use of defined media culture conditions. NP cells will be characterized by their immunohistochemical profile as well as by their ability to differentiate into neuronal cells. Specific aim 3: Cellular labeling of neuronal progenitors cells for in vitro traceability. In order to track the cells once implanted in the host brain, they will be tagged with different methods such as lipophilic fluorescent tracers and transduction with GFP protein expression.
Resumo:
Fanconi anemia (FA) is a rare recessive genetic disease with an array of clinical manifestations including multiple congenital abnormalities, progressive bone marrow failure and profound cancer susceptibility. A hallmark of cells derived from FA patients is hypersensitivity to DNA interstrand crosslinking agents such as mitomycin C (MMC) and cisplatin, suggesting that FA- and FA-associated proteins play important roles in protecting cells from DNA interstrand crosslink (ICL) damage. Two genes involved in the FA pathway, FANCM and FAAP24, are of particular interest because they contain DNA interacting domains. However, there are no definitive patient mutations for these two genes, and the resulting lack of human genetic model system renders their functional studies difficult. In this study, I established isogenic human FANCM- and FAAP24-null mutants through homologous replacement-mediated gene targeting in HCT-116 cells, and systematically investigated the functions of FANCM and FAAP24 inchromosome stability, FA pathway activation, DNA damage checkpoint signaling, and ICL repair. I found that the FANCM-/-/FAAP24-/- double mutant was much more sensitive to DNA crosslinking agents than FANCM-/- and FAAP24-/- single mutants, suggesting that FANCM and FAAP24 possess epistatic as well as unique functions in response to ICL damage. I demonstrated that FANCM and FAAP24 coordinately support the activation of FA pathway by promoting chromatin localization of FA core complex and FANCD2 monoubiqutination. They also cooperatively function to suppress sister chromatid exchange and radial chromosome formation, likely by limiting crossovers in recombination repair. In addition, I defined novel non-overlapping functions of FANCM and FAAP24 in response to ICL damage. FAAP24 plays a major role in activating ICL-induced ATR-dependent checkpoint, which is independent of its interaction with FANCM. On the other hand, FANCM promotes recombination-independent ICL repair independently of FAAP24. Mechanistically, FANCM facilitates recruitment of nucleotide excision repair machinery and lesion bypass factors to ICL damage sites through its translocase activity. Collectively, my studies provide mechanistic insights into how genome integrity is both coordinately and independently protected by FANCM and FAAP24.
Resumo:
Mechanisms of multidrug resistance (MDR) were studied in two independent MDR sublines (AdR1.2 and SRA1.2) derived from the established human colon carcinoma cell line LoVo. AdR1.2 was developed by long-term continuous exposure of the cells to adriamycin (AdR) in stepwise increments of concentration, while SRA1.2 was selected by repetitive pulse treatments with AdR at a single concentration. In this dissertation, the hypothesis that the mechanism of drug resistance in SRA1.2 is different than that in AdR1.2 is tested. While SRA1.2 demonstrated similar biological characteristics when compared to the parental LoVo, AdR1.2 exhibited remarkable alterations in biological properties. The resistance phenotype of AdR1.2 was reversible when the cells were grown in the drug-free medium whereas SRA1.2 maintained its resistance for at least 10 months under similar conditions. Km and Vmax of carrier-mediated facilitated diffusion AdR transport were similar among the three lines. However, both resistant sublines exhibited an energy-dependent drug efflux. AdR1.2 appeared to possess an activated efflux pump, and a decreased nucleus-binding of AdR, whereas SRA1.2 showed merely a lower affinity in binding of AdR to the nuclei. Southern blot analysis showed no amplification of the MDR1 gene in either of the two resistant subclones. However, Western blot analysis using the C219 monoclonal antibody against P170 glycoprotein detected a Mr 150-kDa plasma protein (P150) in AdR1.2 but not in SRA1.2 or in the parental LoVo. In vitro phosphorylation studies revealed that P150 was a phosphoprotein; its phosphorylation was Mg$\sp{2+}$-dependent and could be enhanced by verapamil, an agent capable of increasing intracellular AdR accumulation in AdR1.2 cells. The phosphorylation studies also revealed elevated phosphorylation of a Mr 66-kDa plasma membrane protein that was detectable in the AdR1.2 revertant and in AdR1.2 when verapamil was present, suggesting that hyperphosphorylation of the Mr 66-kDa protein may be related to the reversal of MDR. SDS-PAGE of the plasma membrane protein demonstrated overproduction of a Mr 130-kDa, MDR-related protein in both the resistant sublines. The Mr 130-kDa, MDR-related protein in both the resistant sublines. The Mr 130-kDa protein was not immunoreactive with C219, but its absence in the AdR1.2 revertant and the parental LoVo suggests that it is an MDR-related plasma membrane protein. In conclusion, the results from this study support the author's hypothesis that the mechanisms responsible for "Acquired" and "Natural" MDR are not identical. ^
Resumo:
Nitric oxide is involved in a multitude of processes including regulation of vascular tone, neurotransmission, immunity, and cancer. Evidence suggests that nitric oxide exhibits anti-apoptotic activity in melanoma cells. Our laboratory showed that tumor expression of inducible nitric oxide synthase correlated strongly with poor survival in stage III and IV melanoma patients, suggesting an antagonistic role for nitric oxide in melanoma response to therapy. Therefore, the hypothesis that endogenously produced nitric oxide antagonizes chemotherapy-induced apoptosis was formed. Using cisplatin as a model for DNA damage in melanoma cell lines, the capacity of nitric oxide to regulate cell growth and apoptotic responses to cisplatin treatment was examined. The depletion of endogenously generated nitric oxide resulted in changes in cell cycle regulation and enhanced cisplatin-induced apoptosis in melanoma cells. Since nitric oxide was shown to be involved in the regulation of p53 stability, conformation and DNA binding activity, whether signaling through wild-type p53 in melanoma cells is regulated by nitric oxide was tested. Cisplatin-induced p53 accumulation and p21Waf1/Cip1/Sdi1 expression in nitric oxide-depleted melanoma cells were found to be strongly suppressed. When p53 binding to the p21Waf1/Cip1/Sdi1 promoter was examined, it was found that nitric oxide depletion significantly reduced the cisplatin-induced formation of p53-DNA complexes. These results suggest that nitric oxide is required for activation of wild-type p53 after DNA damage in melanoma cells. Finally, whether signaling through p53 controls melanoma response to DNA damage was examined. Transfection of a plasmid containing a dominant negative form of mutated p53 inhibited p21 Waf1/Cip1/Sdi1 expression and concomitantly enhanced apoptosis after cisplatin treatment. These data suggest that the induction of wild-type p53 protects melanoma cells against DNA damage via the up-regulation of p21 Waf1/Cip1/Sdi1. Together, these data strongly support the model that endogenous nitric oxide is required for p53 activation and p21Waf1/Cip1/Sdi1 expression after DNA damage, which can enhance melanoma resistance to therapy. Thus, in context of melanoma cells with wild-type p53 , low levels of endogenous constitutively-produced nitric oxide appear to facilitate the activation of p53 in response to DNA damage, thereby allowing for cell cycle arrest via p21Waf1/Cip1/Sdi1 induction, adequate DNA repair, and ultimately enhanced resistance to apoptosis. ^
Resumo:
This paper outlines an automatic computervision system for the identification of avena sterilis which is a special weed seed growing in cereal crops. The final goal is to reduce the quantity of herbicide to be sprayed as an important and necessary step for precision agriculture. So, only areas where the presence of weeds is important should be sprayed. The main problems for the identification of this kind of weed are its similar spectral signature with respect the crops and also its irregular distribution in the field. It has been designed a new strategy involving two processes: image segmentation and decision making. The image segmentation combines basic suitable image processing techniques in order to extract cells from the image as the low level units. Each cell is described by two area-based attributes measuring the relations among the crops and weeds. The decision making is based on the SupportVectorMachines and determines if a cell must be sprayed. The main findings of this paper are reflected in the combination of the segmentation and the SupportVectorMachines decision processes. Another important contribution of this approach is the minimum requirements of the system in terms of memory and computation power if compared with other previous works. The performance of the method is illustrated by comparative analysis against some existing strategies.
Resumo:
Esta Tesis trata sobre el desarrollo y crecimiento -mediante tecnología MOVPE (del inglés: MetalOrganic Vapor Phase Epitaxy)- de células solares híbridas de semiconductores III-V sobre substratos de silicio. Esta integración pretende ofrecer una alternativa a las células actuales de III-V, que, si bien ostentan el récord de eficiencia en dispositivos fotovoltaicos, su coste es, a día de hoy, demasiado elevado para ser económicamente competitivo frente a las células convencionales de silicio. De este modo, este proyecto trata de conjugar el potencial de alta eficiencia ya demostrado por los semiconductores III-V en arquitecturas de células fotovoltaicas multiunión con el bajo coste, la disponibilidad y la abundancia del silicio. La integración de semiconductores III-V sobre substratos de silicio puede afrontarse a través de diferentes aproximaciones. En esta Tesis se ha optado por el desarrollo de células solares metamórficas de doble unión de GaAsP/Si. Mediante esta técnica, la transición entre los parámetros de red de ambos materiales se consigue por medio de la formación de defectos cristalográficos (mayoritariamente dislocaciones). La idea es confinar estos defectos durante el crecimiento de sucesivas capas graduales en composición para que la superficie final tenga, por un lado, una buena calidad estructural, y por otro, un parámetro de red adecuado. Numerosos grupos de investigación han dirigido sus esfuerzos en los últimos años en desarrollar una estructura similar a la que aquí proponemos. La mayoría de éstos se han centrado en entender los retos asociados al crecimiento de materiales III-V, con el fin de conseguir un material de alta calidad cristalográfica. Sin embargo, prácticamente ninguno de estos grupos ha prestado especial atención al desarrollo y optimización de la célula inferior de silicio, cuyo papel va a ser de gran relevancia en el funcionamiento de la célula completa. De esta forma, y con el fin de completar el trabajo hecho hasta el momento en el desarrollo de células de III-V sobre silicio, la presente Tesis se centra, fundamentalmente, en el diseño y optimización de la célula inferior de silicio, para extraer su máximo potencial. Este trabajo se ha estructurado en seis capítulos, ordenados de acuerdo al desarrollo natural de la célula inferior. Tras un capítulo de introducción al crecimiento de semiconductores III-V sobre Si, en el que se describen las diferentes alternativas para su integración; nos ocupamos de la parte experimental, comenzando con una extensa descripción y caracterización de los substratos de silicio. De este modo, en el Capítulo 2 se analizan con exhaustividad los diferentes tratamientos (tanto químicos como térmicos) que deben seguir éstos para garantizar una superficie óptima sobre la que crecer epitaxialmente el resto de la estructura. Ya centrados en el diseño de la célula inferior, el Capítulo 3 aborda la formación de la unión p-n. En primer lugar se analiza qué configuración de emisor (en términos de dopaje y espesor) es la más adecuada para sacar el máximo rendimiento de la célula inferior. En este primer estudio se compara entre las diferentes alternativas existentes para la creación del emisor, evaluando las ventajas e inconvenientes que cada aproximación ofrece frente al resto. Tras ello, se presenta un modelo teórico capaz de simular el proceso de difusión de fosforo en silicio en un entorno MOVPE por medio del software Silvaco. Mediante este modelo teórico podemos determinar qué condiciones experimentales son necesarias para conseguir un emisor con el diseño seleccionado. Finalmente, estos modelos serán validados y constatados experimentalmente mediante la caracterización por técnicas analíticas (i.e. ECV o SIMS) de uniones p-n con emisores difundidos. Uno de los principales problemas asociados a la formación del emisor por difusión de fósforo, es la degradación superficial del substrato como consecuencia de su exposición a grandes concentraciones de fosfina (fuente de fósforo). En efecto, la rugosidad del silicio debe ser minuciosamente controlada, puesto que éste servirá de base para el posterior crecimiento epitaxial y por tanto debe presentar una superficie prístina para evitar una degradación morfológica y cristalográfica de las capas superiores. En este sentido, el Capítulo 4 incluye un análisis exhaustivo sobre la degradación morfológica de los substratos de silicio durante la formación del emisor. Además, se proponen diferentes alternativas para la recuperación de la superficie con el fin de conseguir rugosidades sub-nanométricas, que no comprometan la calidad del crecimiento epitaxial. Finalmente, a través de desarrollos teóricos, se establecerá una correlación entre la degradación morfológica (observada experimentalmente) con el perfil de difusión del fósforo en el silicio y por tanto, con las características del emisor. Una vez concluida la formación de la unión p-n propiamente dicha, se abordan los problemas relacionados con el crecimiento de la capa de nucleación de GaP. Por un lado, esta capa será la encargada de pasivar la subcélula de silicio, por lo que su crecimiento debe ser regular y homogéneo para que la superficie de silicio quede totalmente pasivada, de tal forma que la velocidad de recombinación superficial en la interfaz GaP/Si sea mínima. Por otro lado, su crecimiento debe ser tal que minimice la aparición de los defectos típicos de una heteroepitaxia de una capa polar sobre un substrato no polar -denominados dominios de antifase-. En el Capítulo 5 se exploran diferentes rutinas de nucleación, dentro del gran abanico de posibilidades existentes, para conseguir una capa de GaP con una buena calidad morfológica y estructural, que será analizada mediante diversas técnicas de caracterización microscópicas. La última parte de esta Tesis está dedicada al estudio de las propiedades fotovoltaicas de la célula inferior. En ella se analiza la evolución de los tiempos de vida de portadores minoritarios de la base durante dos etapas claves en el desarrollo de la estructura Ill-V/Si: la formación de la célula inferior y el crecimiento de las capas III-V. Este estudio se ha llevado a cabo en colaboración con la Universidad de Ohio, que cuentan con una gran experiencia en el crecimiento de materiales III-V sobre silicio. Esta tesis concluye destacando las conclusiones globales del trabajo realizado y proponiendo diversas líneas de trabajo a emprender en el futuro. ABSTRACT This thesis pursues the development and growth of hybrid solar cells -through Metal Organic Vapor Phase Epitaxy (MOVPE)- formed by III-V semiconductors on silicon substrates. This integration aims to provide an alternative to current III-V cells, which, despite hold the efficiency record for photovoltaic devices, their cost is, today, too high to be economically competitive to conventional silicon cells. Accordingly, the target of this project is to link the already demonstrated efficiency potential of III-V semiconductor multijunction solar cell architectures with the low cost and unconstrained availability of silicon substrates. Within the existing alternatives for the integration of III-V semiconductors on silicon substrates, this thesis is based on the metamorphic approach for the development of GaAsP/Si dual-junction solar cells. In this approach, the accommodation of the lattice mismatch is handle through the appearance of crystallographic defects (namely dislocations), which will be confined through the incorporation of a graded buffer layer. The resulting surface will have, on the one hand a good structural quality; and on the other hand the desired lattice parameter. Different research groups have been working in the last years in a structure similar to the one here described, being most of their efforts directed towards the optimization of the heteroepitaxial growth of III-V compounds on Si, with the primary goal of minimizing the appearance of crystal defects. However, none of these groups has paid much attention to the development and optimization of the bottom silicon cell, which, indeed, will play an important role on the overall solar cell performance. In this respect, the idea of this thesis is to complete the work done so far in this field by focusing on the design and optimization of the bottom silicon cell, to harness its efficiency. This work is divided into six chapters, organized according to the natural progress of the bottom cell development. After a brief introduction to the growth of III-V semiconductors on Si substrates, pointing out the different alternatives for their integration; we move to the experimental part, which is initiated by an extensive description and characterization of silicon substrates -the base of the III-V structure-. In this chapter, a comprehensive analysis of the different treatments (chemical and thermal) required for preparing silicon surfaces for subsequent epitaxial growth is presented. Next step on the development of the bottom cell is the formation of the p-n junction itself, which is faced in Chapter 3. Firstly, the optimization of the emitter configuration (in terms of doping and thickness) is handling by analytic models. This study includes a comparison between the different alternatives for the emitter formation, evaluating the advantages and disadvantages of each approach. After the theoretical design of the emitter, it is defined (through the modeling of the P-in-Si diffusion process) a practical parameter space for the experimental implementation of this emitter configuration. The characterization of these emitters through different analytical tools (i.e. ECV or SIMS) will validate and provide experimental support for the theoretical models. A side effect of the formation of the emitter by P diffusion is the roughening of the Si surface. Accordingly, once the p-n junction is formed, it is necessary to ensure that the Si surface is smooth enough and clean for subsequent phases. Indeed, the roughness of the Si must be carefully controlled since it will be the basis for the epitaxial growth. Accordingly, after quantifying (experimentally and by theoretical models) the impact of the phosphorus on the silicon surface morphology, different alternatives for the recovery of the surface are proposed in order to achieve a sub-nanometer roughness which does not endanger the quality of the incoming III-V layers. Moving a step further in the development of the Ill-V/Si structure implies to address the challenges associated to the GaP on Si nucleation. On the one hand, this layer will provide surface passivation to the emitter. In this sense, the growth of the III-V layer must be homogeneous and continuous so the Si emitter gets fully passivated, providing a minimal surface recombination velocity at the interface. On the other hand, the growth should be such that the appearance of typical defects related to the growth of a polar layer on a non-polar substrate is minimized. Chapter 5 includes an exhaustive study of the GaP on Si nucleation process, exploring different nucleation routines for achieving a high morphological and structural quality, which will be characterized by means of different microscopy techniques. Finally, an extensive study of the photovoltaic properties of the bottom cell and its evolution during key phases in the fabrication of a MOCVD-grown III-V-on-Si epitaxial structure (i.e. the formation of the bottom cell; and the growth of III-V layers) will be presented in the last part of this thesis. This study was conducted in collaboration with The Ohio State University, who has extensive experience in the growth of III-V materials on silicon. This thesis concludes by highlighting the overall conclusions of the presented work and proposing different lines of work to be undertaken in the future.
Resumo:
We have investigated the relationships between the apical sorting mechanism using lipid rafts and the soluble N-ethyl maleimide-sensitive factor attachment protein receptor (SNARE) machinery, which is involved in membrane docking and fusion. We first confirmed that anti-alpha-SNAP antibodies inhibit the apical pathway in Madin– Darby canine kidney (MDCK) cells; in addition, we report that a recombinant SNAP protein stimulates the apical transport whereas a SNAP mutant inhibits this transport step. Based on t-SNARE overexpression experiments and the effect of botulinum neurotoxin E, syntaxin 3 and SNAP-23 have been implicated in apical membrane trafficking. Here, we show in permeabilized MDCK cells that antisyntaxin 3 and anti-SNAP-23 antibodies lower surface delivery of an apical reporter protein. Moreover, using a similar approach, we show that tetanus toxin-insensitive, vesicle-associated membrane protein (TI-VAMP; also called VAMP7), a recently described apical v-SNARE, is involved. Furthermore, we show the presence of syntaxin 3 and TI-VAMP in isolated apical carriers. Polarized apical sorting has been postulated to be mediated by the clustering of apical proteins into dynamic sphingolipid-cholesterol rafts. We provide evidence that syntaxin 3 and TI-VAMP are raft-associated. These data support a raft-based mechanism for the sorting of not only apically destined cargo but also of SNAREs having functions in apical membrane-docking and fusion events.
Resumo:
The activation of cyclin-dependent kinases (cdks) has been implicated in apoptosis induced by various stimuli. We find that the Fas-induced activation of cdc2 and cdk2 in Jurkat cells is not dependent on protein synthesis, which is shut down very early during apoptosis before caspase-3 activation. Instead, activation of these kinases seems to result from both a rapid cleavage of Wee1 (an inhibitory kinase of cdc2 and cdk2) and inactivation of anaphase-promoting complex (the specific system for cyclin degradation), in which CDC27 homolog is cleaved during apoptosis. Both Wee1 and CDC27 are shown to be substrates of the caspase-3-like protease. Although cdk activities are elevated during Fas-induced apoptosis in Jurkat cells, general activation of the mitotic processes does not occur. Our results do not support the idea that apoptosis is simply an aberrant mitosis but, instead, suggest that a subset of mitotic mechanisms plays an important role in apoptosis through elevated cdk activities.
Resumo:
Many neurons of the central nervous system display multiple high voltage-activated Ca2+ currents, pharmacologically classified as L-, N-, P-, Q-, and R-type. Of these current types, the R-type is the least understood. The leading candidate for the molecular correlate of R-type currents in cerebellar granule cells is the α1E subunit, which yields Ca2+ currents very similar to the R-type when expressed in heterologous systems. As a complementary approach, we tested whether antisense oligonucleotides against α1E could decrease the expression of R-type current in rat cerebellar granule neurons in culture. Cells were supplemented with either antisense or sense oligonucleotides and whole-cell patch clamp recordings were obtained after 6–8 days in vitro. Incubation with α1E antisense oligonucleotide caused a 52.5% decrease in the peak R-type current density, from −10 ± 0.6 picoamperes/picofarad (pA/pF) (n = 6) in the untreated controls to −4.8 ± 0.8 pA/pF (n = 11) (P < 0.01). In contrast, no significant changes in the current expression were seen in sense oligonucleotide-treated cells (−11.3 ± 3.2 pA/pF). The specificity of the α1E antisense oligonucleotides was supported by the lack of change in estimates of the P/Q current amplitude. Furthermore, antisense and sense oligonucleotides against α1A did not affect R-type current expression (−11.5 ± 1.7 and −11.7 ± 1.7 pA/pF, respectively), whereas the α1A antisense oligonucleotide significantly reduced whole cell currents under conditions in which P/Q current is dominant. Our results support the hypothesis that members of the E class of α1 subunits support the high voltage-activated R-type current in cerebellar granule cells.
Resumo:
The importance of CCAAT/enhancer binding proteins (C/EBPs) and binding sites for HIV-1 replication in primary macrophages, T cell lines and primary CD4+ T cells was examined. When lines overexpressing the C/EBP dominant-negative protein LIP were infected with HIV-1, replication occurred in Jurkat T cells but not in U937 promonocytes, demonstrating a requirement for C/EBP activators by HIV-1 only in promonocytes. Primary macrophages did not support the replication of HIV-1 harboring mutant C/EBP binding sites in the long terminal repeat but Jurkat, H9 and primary CD4+ T cells supported replication of wild-type and mutant HIV-1 equally well. Thus the requirement for C/EBP sites is also confined to monocyte/macrophages. The requirement for C/EBP proteins and sites identifies the first uniquely macrophage-specific regulatory mechanism for HIV-1 replication.
Resumo:
Among the four subtypes of Hodgkin disease (HD), lymphocyte-predominant (LP) HD is now generally considered as a separate entity. The B cell nature of the typical Hodgkin and Reed–Sternberg (HRS) cells and their variants (L and H, lymphocytic and histiocytic cells) in LP HD has long been suspected, but the question of whether these cells represent a true tumor clone is unclear. We previously demonstrated clonal Ig gene rearrangements in one case of LP HD. In the present study, five cases of LP HD were analyzed by micromanipulation of single HRS cells from frozen tissue sections and DNA amplification of rearranged Ig heavy chain genes from those cells. Clonal V gene rearrangements harboring somatic mutations were detected in each case. In three cases ongoing somatic mutation was evident. This shows that HRS cells in LP HD are a clonal tumor population derived from germinal center B cells. The pattern of somatic mutation indicates that HRS cells in LP HD are selected for antibody expression. This, and the presence of ongoing mutation discriminates LP from classical HD.
Resumo:
LINEs are transposable elements, widely distributed among eukaryotes, that move via reverse transcription of an RNA intermediate. Mammalian LINEs have two ORFs (ORF1 and ORF2). The proteins encoded by these ORFs play important roles in the retrotransposition process. Although the predicted amino acid sequence of ORF1 is not closely related to any known proteins, it is highly basic; thus, it has long been hypothesized that ORF1 protein functions to bind LINE-1 (L1) RNA during retrotransposition. Cofractionation of ORF1 protein and L1 RNA in extracts from both mouse and human embryonal carcinoma cells indicated that ORF1 protein binds L1 RNA, forming a ribonucleoprotein particle. Based on UV crosslinking and electrophoretic mobility-shift assays using purified components, we demonstrate here that the ORF1 protein encoded by mouse L1 binds nucleic acids with a strong preference for RNA and other single-stranded nucleic acids. Furthermore, multiple copies of ORF1 protein appear to bind single-stranded nucleic acid in a manner suggesting positive cooperativity; such binding characteristics are likely to be facilitated by the protein–protein interactions detected among molecules of ORF1 polypeptide by coimmunoprecipitation. These observations are consistent with the formation of ribonucleoprotein particles containing L1 RNA and ORF1 protein and provide additional evidence for the role of ORF1 protein during retrotransposition of L1.