982 resultados para Solid-shell element
Resumo:
It has been argued that power-law time-to-failure fits for cumulative Benioff strain and an evolution in size-frequency statistics in the lead-up to large earthquakes are evidence that the crust behaves as a Critical Point (CP) system. If so, intermediate-term earthquake prediction is possible. However, this hypothesis has not been proven. If the crust does behave as a CP system, stress correlation lengths should grow in the lead-up to large events through the action of small to moderate ruptures and drop sharply once a large event occurs. However this evolution in stress correlation lengths cannot be observed directly. Here we show, using the lattice solid model to describe discontinuous elasto-dynamic systems subjected to shear and compression, that it is for possible correlation lengths to exhibit CP-type evolution. In the case of a granular system subjected to shear, this evolution occurs in the lead-up to the largest event and is accompanied by an increasing rate of moderate-sized events and power-law acceleration of Benioff strain release. In the case of an intact sample system subjected to compression, the evolution occurs only after a mature fracture system has developed. The results support the existence of a physical mechanism for intermediate-term earthquake forecasting and suggest this mechanism is fault-system dependent. This offers an explanation of why accelerating Benioff strain release is not observed prior to all large earthquakes. The results prove the existence of an underlying evolution in discontinuous elasto-dynamic, systems which is capable of providing a basis for forecasting catastrophic failure and earthquakes.
Resumo:
The Load-Unload Response Ratio (LURR) method is an intermediate-term earthquake prediction approach that has shown considerable promise. It involves calculating the ratio of a specified energy release measure during loading and unloading where loading and unloading periods are determined from the earth tide induced perturbations in the Coulomb Failure Stress on optimally oriented faults. In the lead-up to large earthquakes, high LURR values are frequently observed a few months or years prior to the event. These signals may have a similar origin to the observed accelerating seismic moment release (AMR) prior to many large earthquakes or may be due to critical sensitivity of the crust when a large earthquake is imminent. As a first step towards studying the underlying physical mechanism for the LURR observations, numerical studies are conducted using the particle based lattice solid model (LSM) to determine whether LURR observations can be reproduced. The model is initialized as a heterogeneous 2-D block made up of random-sized particles bonded by elastic-brittle links. The system is subjected to uniaxial compression from rigid driving plates on the upper and lower edges of the model. Experiments are conducted using both strain and stress control to load the plates. A sinusoidal stress perturbation is added to the gradual compressional loading to simulate loading and unloading cycles and LURR is calculated. The results reproduce signals similar to those observed in earthquake prediction practice with a high LURR value followed by a sudden drop prior to macroscopic failure of the sample. The results suggest that LURR provides a good predictor for catastrophic failure in elastic-brittle systems and motivate further research to study the underlying physical mechanisms and statistical properties of high LURR values. The results provide encouragement for earthquake prediction research and the use of advanced simulation models to probe the physics of earthquakes.
Resumo:
In order to understand the earthquake nucleation process, we need to understand the effective frictional behavior of faults with complex geometry and fault gouge zones. One important aspect of this is the interaction between the friction law governing the behavior of the fault on the microscopic level and the resulting macroscopic behavior of the fault zone. Numerical simulations offer a possibility to investigate the behavior of faults on many different scales and thus provide a means to gain insight into fault zone dynamics on scales which are not accessible to laboratory experiments. Numerical experiments have been performed to investigate the influence of the geometric configuration of faults with a rate- and state-dependent friction at the particle contacts on the effective frictional behavior of these faults. The numerical experiments are designed to be similar to laboratory experiments by DIETERICH and KILGORE (1994) in which a slide-hold-slide cycle was performed between two blocks of material and the resulting peak friction was plotted vs. holding time. Simulations with a flat fault without a fault gouge have been performed to verify the implementation. These have shown close agreement with comparable laboratory experiments. The simulations performed with a fault containing fault gouge have demonstrated a strong dependence of the critical slip distance D-c on the roughness of the fault surfaces and are in qualitative agreement with laboratory experiments.
Resumo:
Solid earth simulations have recently been developed to address issues such as natural disasters, global environmental destruction and the conservation of natural resources. The simulation of solid earth phenomena involves the analysis of complex structures including strata, faults, and heterogeneous material properties. Simulation of the generation and cycle of earthquakes is particularly important, but such simulations require the analysis of complex fault dynamics. GeoFEM is a parallel finite-element analysis system intended for solid earth field phenomena problems. This paper describes recent development in the GeoFEM project for the simulation of earthquake generation and cycles.
Resumo:
Crushing and grinding are the most energy intensive part of the mineral recovery process. A major part of rock size reduction occurs in tumbling mills. Empirical models for the power draw of tumbling mills do not consider the effect of lifters. Discrete element modelling was used to investigate the effect of lifter condition on the power draw of tumbling mill. Results obtained with PFC3D code show that lifter condition will have a significant influence on the power draw and on the mode of energy consumption in the mill. Relatively high lifters will consume less power than low lifters, under otherwise identical conditions. The fraction of the power that will be consumed as friction will increase as the height of the lifters decreases. This will result in less power being used for high intensity comminution caused by the impacts. The fraction of the power that will be used to overcome frictional resistance is determined by the material's coefficient of friction. Based on the modelled results, it appears that the effective coefficient of friction for in situ mill is close to 0.1. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The PFC3D (particle flow code) that models the movement and interaction of particles by the DEM techniques was employed to simulate the particle movement and to calculate the velocity and energy distribution of collision in two types of impact crusher: the Canica vertical shaft crusher and the BJD horizontal shaft swing hammer mill. The distribution of collision energies was then converted into a product size distribution for a particular ore type using JKMRC impact breakage test data. Experimental data of the Canica VSI crusher treating quarry and the BJD hammer mill treating coal were used to verify the DEM simulation results. Upon the DEM procedures being validated, a detailed simulation study was conducted to investigate the effects of the machine design and operational conditions on velocity and energy distributions of collision inside the milling chamber and on the particle breakage behaviour. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Intervalley interference between degenerate conduction band minima has been shown to lead to oscillations in the exchange energy between neighboring phosphorus donor electron states in silicon [B. Koiller, X. Hu, and S. Das Sarma, Phys. Rev. Lett. 88, 027903 (2002); Phys. Rev. B 66, 115201 (2002)]. These same effects lead to an extreme sensitivity of the exchange energy on the relative orientation of the donor atoms, an issue of crucial importance in the construction of silicon-based spin quantum computers. In this article we calculate the donor electron exchange coupling as a function of donor position incorporating the full Bloch structure of the Kohn-Luttinger electron wave functions. It is found that due to the rapidly oscillating nature of the terms they produce, the periodic part of the Bloch functions can be safely ignored in the Heitler-London integrals as was done by Koiller, Hu, and Das Sarma, significantly reducing the complexity of calculations. We address issues of fabrication and calculate the expected exchange coupling between neighboring donors that have been implanted into the silicon substrate using an 15 keV ion beam in the so-called top down fabrication scheme for a Kane solid-state quantum computer. In addition, we calculate the exchange coupling as a function of the voltage bias on control gates used to manipulate the electron wave functions and implement quantum logic operations in the Kane proposal, and find that these gate biases can be used to both increase and decrease the magnitude of the exchange coupling between neighboring donor electrons. The zero-bias results reconfirm those previously obtained by Koiller, Hu, and Das Sarma.
Resumo:
The power required to operate large mills is typically 5-10 MW. Hence, optimisation of power consumption will have a significant impact on overall economic performance and environmental impact. Power draw modelling results using the discrete element code PFC3D have been compared with results derived from the widely used empirical Model of Morrell. This is achieved by calculating the power draw for a range of operating conditions for constant mill size and fill factor using two modelling approaches. fThe discrete element modelling results show that, apart from density, selection of the appropriate material damping ratio is critical for the accuracy of modelling of the mill power draw. The relative insensitivity of the power draw to the material stiffness allows selection of moderate stiffness values, which result in acceptable computation time. The results obtained confirm that modelling of the power draw for a vertical slice of the mill, of thickness 20% of the mill length, is a reliable substitute for modelling the full mill. The power draw predictions from PFC3D show good agreement with those obtained using the empirical model. Due to its inherent flexibility, power draw modelling using PFC3D appears to be a viable and attractive alternative to empirical models where necessary code and computer power are available.
Resumo:
An equivalent unit cell waveguide approach (WGA) to designing 4 multilayer microstrip reflectarray of variable size patches is presented. In this approach, a normal incidence of a plane wave on an infinite periodic array of radiating elements is considered to obtain reflection coefficient phase curves for the reflectarray's elements. It is shown that this problem is equivalent to the problem of reflection of the dominant TEM mode in a waveguide with patches interleaved by layers of dielectric. This waveguide problem is solved using a field matching technique and a method of moments (MoM). Based on this solution, a fast computer algorithm is developed to generate reflection coefficient phase curves for a multilayer microstrip patch reflectarray. The validity of the developed algorithm is tested against alternative approaches and Agilent High Frequency Structure Simulator (HFSS). Having confirmed the validity of the WGA approach, a small offset feed two-layer microstrip patch array is designed and developed. This reflectarray is tested experimentally and shows good performance.
Resumo:
Solid-state C-13 nuclear magnetic resonance (NMR) with cross-polarisation (CP) and magic-angle-spinning (MAS) was used to: (a) examine the changes in carbon (C) composition of windrowed harvest residues during the first 3 years of hoop pine plantations in subtropical Australia; (b) assess the impacts of windrowed harvest residues on soil organic matter (SOM) composition and quality in the 0-10 cm soil layer. Harvest residues were collected from 0-, 1-, 2- and 3-year-old windrows of ca. 2.5 m width (15 m apart for 0-, 1- and 2-year-old sites and 10 m apart for 3-year-old site). Soils from the 0 to 10 cm soil layer were collected from the 1-, 2- and 3-year-old sites. The 13C NMR spectra of the harvest residues indicated the presence of lignin in the hoop pine wood, foliage and newly incorporated organic matter (NIOM). Condensed tannin structures were found in the decay-resistant bark, small wood and foliage, but were absent in other residue components and SOM. The NMR spectra of small wood samples contained condensed tannin structures because the outer layer of bark was not removed. NIOM showed a shift from foliage-like structures (celluloses) to lignin-type structures, indicating an incorporation of woody residues from the decomposing harvest residues. Suberins were also present in the small wood, foliage and bark. The 13C CP NMR spectra of SOM indicated that in areas where windrows were present, SOM did not show compositional changes. However, an increase in SOM quality under the windrows in the second year after their formation as characterised by the alkyl C/O-alkyl C (A/O-A) ratio was mainly due to inputs from the decomposition of the labile, readily available components of the windrowed harvest residues. (C) 2002 Published by Elsevier Science B.V.
Resumo:
A series of 'pellicular' type supports were fabricated by direct gamma-radiation-mediated graft polymerisation of styrene onto polypropylene, followed by aminomethylation. Raman spectroscopy was used for measuring the level of penetration of polystyrene graft into polypropylene, and other structural features such as density of graft and depth of functionalisation. The kinetics of the coupling of fluorenylmethylcarbamate (Fmoc)-labelled amino acids, to the aminomethylated polystyrene grafts have been measured by UV absorption followed cleavage of the Fmoc chromophore. The Raman spectroscopy results showed that for this series of experiments the calculated rate coefficient for coupling of Fmoc-labelled amino acids was primarily dependent on graft thickness, but was also influenced by the proportion of polystyrene graft to polypropylene. In general, it was also shown that with increasing loading capacity of support the calculated rate coefficient for amino-acid coupling decreased correspondingly. In addition, a support that had both a high rate coefficient and a high loading capacity was prepared from polypropylene base material with a co-continuous porous structure (high surface area). (C) 2003 Society of Chemical Industry.
Resumo:
This paper delineates the development of a prototype hybrid knowledge-based system for the optimum design of liquid retaining structures by coupling the blackboard architecture, an expert system shell VISUAL RULE STUDIO and genetic algorithm (GA). Through custom-built interactive graphical user interfaces under a user-friendly environment, the user is directed throughout the design process, which includes preliminary design, load specification, model generation, finite element analysis, code compliance checking, and member sizing optimization. For structural optimization, GA is applied to the minimum cost design of structural systems with discrete reinforced concrete sections. The design of a typical example of the liquid retaining structure is illustrated. The results demonstrate extraordinarily converging speed as near-optimal solutions are acquired after merely exploration of a small portion of the search space. This system can act as a consultant to assist novice designers in the design of liquid retaining structures.
Resumo:
This paper describes a coupled knowledge-based system (KBS) for the design of liquid-retaining structures, which can handle both the symbolic knowledge processing based on engineering heuristics in the preliminary synthesis stage and the extensive numerical crunching involved in the detailed analysis stage. The prototype system is developed by employing blackboard architecture and a commercial shell VISUAL RULE STUDIO. Its present scope covers design of three types of liquid-retaining structures, namely, a rectangular shape with one compartment, a rectangular shape with two compartments and a circular shape. Through custom-built interactive graphical user interfaces, the user is directed throughout the design process, which includes preliminary design, load specification, model generation, finite element analysis, code compliance checking and member sizing optimization. It is also integrated with various relational databases that provide the system with sectional properties, moment and shear coefficients and final member details. This system can act as a consultant to assist novice designers in the design of liquid-retaining structures with increase in efficiency and optimization of design output and automated record keeping. The design of a typical example of the liquid-retaining structure is also illustrated. (C) 2003 Elsevier B.V All rights reserved.
Resumo:
Based on the refined non-conforming element method for geometric nonlinear analysis, a refined nonlinear non-conforming triangular plate element is constructed using the Total Lagrangian (T.L.) and the Updated Lagrangian (U.L.) approach. The refined nonlinear non-conforming triangular plate element is based on the Allman's triangular plane element with drilling degrees of freedom [1] and the refined non-conforming triangular plate element RT9 [2]. The element is used to analyze the geometric nonlinear behavior of plates and the numerical examples show that the refined non-conforming triangular plate element by the T.L. and U.L. approach can give satisfactory results. The computed results obtained from the T.L. and U.L. approach for the same numerical examples are somewhat different and the reasons for the difference of the computed results are given in detail in this paper. © 2003 Elsevier Science Ltd. All rights reserved.