910 resultados para Single Measuremnet Mode
Resumo:
The peroxisome proliferator-activated receptor gamma (PPAR gamma) is a target for treatment of type II diabetes and other conditions. PPAR gamma full agonists, such as thiazolidinediones (TZDs), are effective insulin sensitizers and anti-inflammatory agents, but their use is limited by adverse side effects. Luteolin is a flavonoid with anti-inflammatory actions that binds PPAR gamma but, unlike TZDs, does not promote adipocyte differentiation. However, previous reports suggested variously that luteolin is a PPAR gamma agonist or an antagonist. We show that luteolin exhibits weak partial agonist/antagonist activity in transfections, inhibits several PPAR gamma target genes in 3T3-L1 cells (LPL, ORL1, and CEBP alpha) and PPAR gamma-dependent adipogenesis, but activates GLUT4 to a similar degree as rosiglitazone, implying gene-specific partial agonism. The crystal structure of the PPAR gamma ligand-binding domain (LBD) reveals that luteolin occupies a buried ligand-binding pocket (LBP) but binds an inactive PPAR gamma LBD conformer and occupies a space near the beta-sheet region far from the activation helix (H12), consistent with partial agonist/antagonist actions. A single myristic acid molecule simultaneously binds the LBP, suggesting that luteolin may cooperate with other ligands to bind PPAR gamma, and molecular dynamics simulations show that luteolin and myristic acid cooperate to stabilize the Omega-loop among H2', H3, and the beta-sheet region. It is noteworthy that luteolin strongly suppresses hypertonicity-induced release of the pro-inflammatory interleukin-8 from human corneal epithelial cells and reverses reductions in transepithelial electrical resistance. This effect is PPAR gamma-dependent. We propose that activities of luteolin are related to its singular binding mode, that anti-inflammatory activity does not require H12 stabilization, and that our structure can be useful in developing safe selective PPAR gamma modulators.
Resumo:
This work presents an investigation of the ductile tearing properties for a girth weld made of an API 5L X80 pipeline steel using experimentally measured crack growth resistance curves. Use of these materials is motivated by the increasing demand in the number of applications for manufacturing high strength pipes for the oil and gas industry including marine applications and steel catenary risers. Testing of the pipeline girth welds employed side-grooved, clamped SE(T) specimens and shallow crack bend SE(B) specimens with a weld centerline notch to determine the crack growth resistance curves based upon the unloading compliance (UC) method using the single specimen technique. Recently developed compliance functions and η-factors applicable for SE(T) and SE(B) fracture specimens with homogeneous material and overmatched welds are introduced to determine crack growth resistance data from laboratory measurements of load-displacement records.
Resumo:
The g-factor is a constant which connects the magnetic moment $vec{mu}$ of a charged particle, of charge q and mass m, with its angular momentum $vec{J}$. Thus, the magnetic moment can be writen $ vec{mu}_J=g_Jfrac{q}{2m}vec{J}$. The g-factor for a free particle of spin s=1/2 should take the value g=2. But due to quantum electro-dynamical effects it deviates from this value by a small amount, the so called g-factor anomaly $a_e$, which is of the order of $10^{-3}$ for the free electron. This deviation is even bigger if the electron is exposed to high electric fields. Therefore highly charged ions, where electric field strength gets values on the order of $10^{13}-10^{16}$V/cm at the position of the bound electron, are an interesting field of investigations to test QED-calculations. In previous experiments [H"aff00,Ver04] using a single hydrogen-like ion confined in a Penning trap an accuracy of few parts in $10^{-9}$ was obtained. In the present work a new method for precise measurement of magnetic the electronic g-factor of hydrogen-like ions is discussed. Due to the unavoidable magnetic field inhomogeneity in a Penning trap, a very important contribution to the systematic uncertainty in the previous measurements arose from the elevated energy of the ion required for the measurement of its motional frequencies. Then it was necessary to extrapolate the result to vanishing energies. In the new method the energy in the cyclotron degree of freedom is reduced to the minimum attainable energy. This method consist in measuring the reduced cyclotron frequency $nu_{+}$ indirectly by coupling the axial to the reduced cyclotron motion by irradiation of the radio frequency $nu_{coup}=nu_{+}-nu_{ax}+delta$ where $delta$ is, in principle, an unknown detuning that can be obtained from the knowledge of the coupling process. Then the only unknown parameter is the desired value of $nu_+$. As a test, a measurement with, for simplicity, artificially increased axial energy was performed yielding the result $g_{exp}=2.000~047~020~8(24)(44)$. This is in perfect agreement with both the theoretical result $g_{theo}=2.000~047~020~2(6)$ and the previous experimental result $g_{exp1}=2.000~047~025~4(15)(44).$ In the experimental results the second error-bar is due to the uncertainty in the accepted value for the electron's mass. Thus, with the new method a higher accuracy in the g-factor could lead by comparison to the theoretical value to an improved value of the electron's mass. [H"af00] H. H"affner et al., Phys. Rev. Lett. 85 (2000) 5308 [Ver04] J. Verd'u et al., Phys. Rev. Lett. 92 (2004) 093002-1
Resumo:
Das in dieser Arbeit vorgestellte Experiment zur Messung des magnetischen Moments des Protons basiert auf der Messung des Verhältnisses von Zyklotronfrequenz und Larmorfrequenz eines einzelnen, in einer kryogenen Doppel-Penning Falle gespeicherten Protons. In dieser Arbeit konnten erstmalig zwei der drei Bewegungsfrequenzen des Protons gleichzeitig im thermischen Gleichgewicht mit entsprechenden hochsensitiven Nachweissystemen nicht-destruktiv detektiert werden, wodurch die Messzeit zur Bestimmung der Zyklotronfrequenz halbiert werden konnte. Ferner wurden im Rahmen dieser Arbeit erstmalig einzelne Spin-Übergänge eines einzelnen Protons detektiert, wodurch die Bestimmung der Larmorfrequenz ermöglicht wird. Mithilfe des kontinuierlichen Stern-Gerlach Effekts wird durch eine sogenannte magnetische Flasche das magnetische Moment an die axiale Bewegungsmode des Protons gekoppelt. Eine Änderung des Spinzustands verursacht folglich einen Frequenzsprung der axialen Bewegungsfrequenz, welche nicht-destruktiv gemessen werden kann. Erschwert wird die Detektion des Spinzustands dadurch, dass die axiale Frequenz nicht nur vom Spinmoment, sondern auch vom Bahnmoment abhängt. Die große experimentelle Herausforderung besteht also in der Verhinderung von Energieschwankungen in den radialen Bewegungsmoden, um die Detektierbarkeit von Spin-Übergängen zu gewährleisten. Durch systematische Studien zur Stabilität der axialen Frequenz sowie einer kompletten Überarbeitung des experimentellen Aufbaus, konnte dieses Ziel erreicht werden. Erstmalig kann der Spinzustand eines einzelnen Protons mit hoher Zuverlässigkeit bestimmt werden. Somit stellt diese Arbeit einen entscheidenden Schritt auf dem Weg zu einer hochpräzisen Messung des magnetischen Moments des Protons dar.
Resumo:
We investigate experimentally the transmission properties of single sub-wavelength coaxial apertures in thin metal films (t = 110 nm). Enhanced transmission through a single sub-wavelength coaxial aperture illuminated with a strongly focused radially polarized light beam is reported. In our experiments we achieved up to four times enhanced transmission through a single coaxial aperture as compared to a (hollow) circular aperture with the same outer diameter.We attribute this enhancement of transmission to the excitation of a TEM-mode for illumination with radially polarized light inside the single coaxial aperture. A strong polarization contrast is observed between the transmission for radially and azimuthally polarized illumination. Furthermore, the observed transmission through a single coaxial aperture can be strongly reduced if surface plasmons are excited. The experimental results are in good agreement with finite difference time domain (FDTD) simulations.
Resumo:
We reported the first application of in situ shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS) to an interfacial redox reaction under electrochemical conditions. We construct gap-mode sandwich structures composed of a thiol-terminated HS-6V6H viologen adlayer immobilized on a single crystal Au(111)-(1x1) electrode and covered by Au(60 nm)@SlO(2) core shell nanoparticles acting as plasmonic antennas. We observed high-quality, potential-dependent Raman spectra of the three viologen species V(2+),V(+center dot) and V(0) on a well-defined Au(111) substrate surface and could map their potential-dependent evolution. Comparison with experiments on powder samples revealed an enhancement factor of the nonresonant Raman modes of similar to 3 x 10(5), and up to 9 x 10(7) for the resonance modes. The study illustrates the unique capability of SHINERS and its potential in the entire field of electrochemical surface science to explore structures and reaction pathways on well-defined substrate surfaces, such as single crystals, for molecular, (electro-)- catalytic, bioelectrochemical systems up to fundamental double layer studies at electrified solid/liquid interfaces.
Resumo:
The purpose of this work was the understanding of microbeam radiation therapy at the ESRF in order to find the best compromise between curing of tumors and sparing of normal tissues, to obtain a better understanding of survival curves and to report its efficiency. This method uses synchrotron-generated x-ray microbeams. Rats were implanted with 9L gliosarcomas and the tumors were diagnosed by MRI. They were irradiated 14 days after implantation by arrays of 25 microm wide microbeams in unidirectional mode, with a skin entrance dose of 625 Gy. The effect of using 200 or 100 microm center-to-center spacing between the microbeams was compared. The median survival time (post-implantation) was 40 and 67 days at 200 and 100 microm spacing, respectively. However, 72% of rats irradiated at 100 microm spacing showed abnormal clinical signs and weight patterns, whereas only 12% of rats were affected at 200 microm spacing. In parallel, histological lesions of the normal brain were found in the 100 microm series only. Although the increase in lifespan was equal to 273% and 102% for the 100 and 200 microm series, respectively, the 200 microm spacing protocol provides a better sparing of healthy tissue and may prove useful in combination with other radiation modalities or additional drugs.
Resumo:
Ultra-high performance fiber reinforced concrete (UHPFRC) has arisen from the implementation of a variety of concrete engineering and materials science concepts developed over the last century. This material offers superior strength, serviceability, and durability over its conventional counterparts. One of the most important differences for UHPFRC over other concrete materials is its ability to resist fracture through the use of randomly dispersed discontinuous fibers and improvements to the fiber-matrix bond. Of particular interest is the materials ability to achieve higher loads after first crack, as well as its high fracture toughness. In this research, a study of the fracture behavior of UHPFRC with steel fibers was conducted to look at the effect of several parameters related to the fracture behavior and to develop a fracture model based on a non-linear curve fit of the data. To determine this, a series of three-point bending tests were performed on various single edge notched prisms (SENPs). Compression tests were also performed for quality assurance. Testing was conducted on specimens of different cross-sections, span/depth (S/D) ratios, curing regimes, ages, and fiber contents. By comparing the results from prisms of different sizes this study examines the weakening mechanism due to the size effect. Furthermore, by employing the concept of fracture energy it was possible to obtain a comparison of the fracture toughness and ductility. The model was determined based on a fit to P-w fracture curves, which was cross referenced for comparability to the results. Once obtained the model was then compared to the models proposed by the AFGC in the 2003 and to the ACI 544 model for conventional fiber reinforced concretes.
Resumo:
RATIONALE AND OBJECTIVES: The aim of this study was to measure the radiation dose of dual-energy and single-energy multidetector computed tomographic (CT) imaging using adult liver, renal, and aortic imaging protocols. MATERIALS AND METHODS: Dual-energy CT (DECT) imaging was performed on a conventional 64-detector CT scanner using a software upgrade (Volume Dual Energy) at tube voltages of 140 and 80 kVp (with tube currents of 385 and 675 mA, respectively), with a 0.8-second gantry revolution time in axial mode. Parameters for single-energy CT (SECT) imaging were a tube voltage of 140 kVp, a tube current of 385 mA, a 0.5-second gantry revolution time, helical mode, and pitch of 1.375:1. The volume CT dose index (CTDI(vol)) value displayed on the console for each scan was recorded. Organ doses were measured using metal oxide semiconductor field-effect transistor technology. Effective dose was calculated as the sum of 20 organ doses multiplied by a weighting factor found in International Commission on Radiological Protection Publication 60. Radiation dose saving with virtual noncontrast imaging reconstruction was also determined. RESULTS: The CTDI(vol) values were 49.4 mGy for DECT imaging and 16.2 mGy for SECT imaging. Effective dose ranged from 22.5 to 36.4 mSv for DECT imaging and from 9.4 to 13.8 mSv for SECT imaging. Virtual noncontrast imaging reconstruction reduced the total effective dose of multiphase DECT imaging by 19% to 28%. CONCLUSION: Using the current Volume Dual Energy software, radiation doses with DECT imaging were higher than those with SECT imaging. Substantial radiation dose savings are possible with DECT imaging if virtual noncontrast imaging reconstruction replaces precontrast imaging.
Resumo:
Bone-anchored hearing implants (BAHI) are routinely used to alleviate the effects of the acoustic head shadow in single-sided sensorineural deafness (SSD). In this study, the influence of the directional microphone setting and the maximum power output of the BAHI sound processor on speech understanding in noise in a laboratory setting were investigated. Eight adult BAHI users with SSD participated in this pilot study. Speech understanding in noise was measured using a new Slovak speech-in-noise test in two different spatial settings, either with noise coming from the front and noise from the side of the BAHI (S90N0) or vice versa (S0N90). In both spatial settings, speech understanding was measured without a BAHI, with a Baha BP100 in omnidirectional mode, with a BP100 in directional mode, with a BP110 power in omnidirectional and with a BP110 power in directional mode. In spatial setting S90N0, speech understanding in noise with either sound processor and in either directional mode was improved by 2.2-2.8 dB (p = 0.004-0.016). In spatial setting S0N90, speech understanding in noise was reduced by either BAHI, but was significantly better by 1.0-1.8 dB, if the directional microphone system was activated (p = 0.046), when compared to the omnidirectional setting. With the limited number of subjects in this study, no statistically significant differences were found between the two sound processors.
Resumo:
Multicarrier transmission such as OFDM (orthogonal frequency division multiplexing) is an established technique for radio transmission systems and it can be considered as a promising approach for next generation wireless systems. However, in order to comply with the demand on increasing available data rates in particular in wireless technologies, systems with multiple transmit and receive antennas, also called MIMO (multiple-input multiple-output) systems, have become indispensable for future generations of wireless systems. Due to the strongly increasing demand in high-data rate transmission systems, frequency non-selective MIMO links have reached a state of maturity and frequency selective MIMO links are in the focus of interest. In this field, the combination of MIMO transmission and OFDM can be considered as an essential part of fulfilling the requirements of future generations of wireless systems. However, single-user scenarios have reached a state of maturity. By contrast multiple users' scenarios require substantial further research, where in comparison to ZF (zero-forcing) multiuser transmission techniques, the individual user's channel characteristics are taken into consideration in this contribution. The performed joint optimization of the number of activated MIMO layers and the number of transmitted bits per subcarrier shows that not necessarily all user-specific MIMO layers per subcarrier have to be activated in order to minimize the overall BER under the constraint of a given fixed data throughput.
Resumo:
In order to comply with the demand on increasing available data rates in particular in wireless technologies, systems with multiple transmit and receive antennas, also called MIMO (multiple-input multiple-output) systems, have become indispensable for future generations of wireless systems. Due to the strongly increasing demand in high-data rate transmission systems, frequency non-selective MIMO links have reached a state of maturity and frequency selective MIMO links are in the focus of interest. In this field, the combination of MIMO transmission and OFDM (orthogonal frequency division multiplexing) can be considered as an essential part of fulfilling the requirements of future generations of wireless systems. However, single-user scenarios have reached a state of maturity. By contrast multiple users’ scenarios require substantial further research, where in comparison to ZF (zero-forcing) multiuser transmission techniques, the individual user’s channel characteristics are taken into consideration in this contribution. The performed joint optimization of the number of activated MIMO layers and the number of transmitted bits per subcarrier along with the appropriate allocation of the transmit power shows that not necessarily all user-specific MIMO layers per subcarrier have to be activated in order to minimize the overall BER under the constraint of a given fixed data throughput.
Resumo:
In order to comply with the demand on increasing available data rates in particular in wireless technologies, systems with multiple transmit and receive antennas, also called MIMO (multiple-input multiple-output) systems, have become indispensable for future generations of wireless systems. Due to the strongly increasing demand in high-data rate transmission systems, frequency non-selective MIMO links have reached a state of maturity and frequency selective MIMO links are in the focus of interest. In this field, the combination of MIMO transmission and OFDM (orthogonal frequency division multiplexing) can be considered as an essential part of fulfilling the requirements of future generations of wireless systems. However, single-user scenarios have reached a state of maturity. By contrast multiple users’ scenarios require substantial further research, where in comparison to ZF (zero-forcing) multiuser transmission techniques, the individual user’s channel characteristics are taken into consideration in this contribution. The performed joint optimization of the number of activated MIMO layers and the number of transmitted bits per subcarrier along with the appropriate allocation of the transmit power shows that not necessarily all user-specific MIMO layers per subcarrier have to be activated in order to minimize the overall BER under the constraint of a given fixed data throughput
Resumo:
The main objective of this work is the design and implementation of the digital control stage of a 280W AC/DC industrial power supply in a single low-cost microcontroller to replace the analog control stage. The switch-mode power supply (SMPS) consists of a PFC boost converter with fixed frequency operation and a variable frequency LLC series resonant DC/DC converter. Input voltage range is 85VRMS-550VRMS and the output voltage range is 24V-28V. A digital controller is especially suitable for this kind of SMPS to implement its multiple functionalities and to keep the efficiency and the performance high over the wide range of input voltages. Additional advantages of the digital control are reliability and size. The optimized design and implementation of the digital control stage it is presented. Experimental results show the stable operation of the controlled system and an estimation of the cost reduction achieved with the digital control stage.
Resumo:
A procedure for measuring the overheating temperature (ΔT ) of a p-n junction area in the structure of photovoltaic (PV) cells converting laser or solar radiations relative to the ambient temperature has been proposed for the conditions of connecting to an electric load. The basis of the procedure is the measurement of the open-circuit voltage (VO C ) during the initial time period after the fast disconnection of the external resistive load. The simultaneous temperature control on an external heated part of a PV module gives the means for determining the value of VO C at ambient temperature. Comparing it with that measured after switching OFF the load makes the calculation of ΔT possible. Calibration data on the VO C = f(T ) dependences for single-junction AlGaAs/GaAs and triple-junction InGaP/GaAs/Ge PV cells are presented. The temperature dynamics in the PV cells has been determined under flash illumination and during fast commutation of the load. Temperature measurements were taken in two cases: converting continuous laser power by single-junction cells and converting solar power by triple-junction cells operating in the concentrator modules.