948 resultados para Single Equation Models
Resumo:
We present a model for mechanical activation of the cardiac tissue depending on the evolution of the transmembrane electrical potential and certain gating/ionic variables that are available in most of electrophysiological descriptions of the cardiac membrane. The basic idea consists in adding to the chosen ionic model one ordinary differential equation for the kinetics of the mechanical activation function. A relevant example illustrates the desired properties of the proposed model, such as delayed muscle contraction and correct magnitude of the muscle fibers' shortening.
Resumo:
A crucial step for understanding how lexical knowledge is represented is to describe the relative similarity of lexical items, and how it influences language processing. Previous studies of the effects of form similarity on word production have reported conflicting results, notably within and across languages. The aim of the present study was to clarify this empirical issue to provide specific constraints for theoretical models of language production. We investigated the role of phonological neighborhood density in a large-scale picture naming experiment using fine-grained statistical models. The results showed that increasing phonological neighborhood density has a detrimental effect on naming latencies, and re-analyses of independently obtained data sets provide supplementary evidence for this effect. Finally, we reviewed a large body of evidence concerning phonological neighborhood density effects in word production, and discussed the occurrence of facilitatory and inhibitory effects in accuracy measures. The overall pattern shows that phonological neighborhood generates two opposite forces, one facilitatory and one inhibitory. In cases where speech production is disrupted (e.g. certain aphasic symptoms), the facilitatory component may emerge, but inhibitory processes dominate in efficient naming by healthy speakers. These findings are difficult to accommodate in terms of monitoring processes, but can be explained within interactive activation accounts combining phonological facilitation and lexical competition.
Resumo:
The suitable timing of capacity investments is a remarkable issue especially in capital intensive industries. Despite its importance, fairly few studies have been published on the topic. In the present study models for the timing of capacity change in capital intensive industry are developed. The study considers mainly the optimal timing of single capacity changes. The review of earlier research describes connections between cost, capacity and timing literature, and empirical examples are used to describe the starting point of the study and to test the developed models. The study includes four models, which describe the timing question from different perspectives. The first model, which minimizes unit costs, has been built for capacity expansion and replacement situations. It is shown that the optimal timing of an investment can be presented with the capacity and cost advantage ratios. After the unit cost minimization model the view is extended to the direction of profit maximization. The second model states that early investments are preferable if the change of fixed costs is small compared to the change of the contribution margin. The third model is a numerical discounted cash flow model, which emphasizes the roles of start-up time, capacity utilization rate and value of waiting as drivers of the profitable timing of a project. The last model expands the view from project level to company level and connects the flexibility of assets and cost structures to the timing problem. The main results of the research are the solutions of the models and analysis or simulations done with the models. The relevance and applicability of the results are verified by evaluating the logic of the models and by numerical cases.
Resumo:
A rigorous unit operation model is developed for vapor membrane separation. The new model is able to describe temperature, pressure, and concentration dependent permeation as wellreal fluid effects in vapor and gas separation with hydrocarbon selective rubbery polymeric membranes. The permeation through the membrane is described by a separate treatment of sorption and diffusion within the membrane. The chemical engineering thermodynamics is used to describe the equilibrium sorption of vapors and gases in rubbery membranes with equation of state models for polymeric systems. Also a new modification of the UNIFAC model is proposed for this purpose. Various thermodynamic models are extensively compared in order to verify the models' ability to predict and correlate experimental vapor-liquid equilibrium data. The penetrant transport through the selective layer of the membrane is described with the generalized Maxwell-Stefan equations, which are able to account for thebulk flux contribution as well as the diffusive coupling effect. A method is described to compute and correlate binary penetrant¿membrane diffusion coefficients from the experimental permeability coefficients at different temperatures and pressures. A fluid flow model for spiral-wound modules is derived from the conservation equation of mass, momentum, and energy. The conservation equations are presented in a discretized form by using the control volume approach. A combination of the permeation model and the fluid flow model yields the desired rigorous model for vapor membrane separation. The model is implemented into an inhouse process simulator and so vapor membrane separation may be evaluated as an integralpart of a process flowsheet.
Resumo:
Over 70% of the total costs of an end product are consequences of decisions that are made during the design process. A search for optimal cross-sections will often have only a marginal effect on the amount of material used if the geometry of a structure is fixed and if the cross-sectional characteristics of its elements are property designed by conventional methods. In recent years, optimalgeometry has become a central area of research in the automated design of structures. It is generally accepted that no single optimisation algorithm is suitable for all engineering design problems. An appropriate algorithm, therefore, mustbe selected individually for each optimisation situation. Modelling is the mosttime consuming phase in the optimisation of steel and metal structures. In thisresearch, the goal was to develop a method and computer program, which reduces the modelling and optimisation time for structural design. The program needed anoptimisation algorithm that is suitable for various engineering design problems. Because Finite Element modelling is commonly used in the design of steel and metal structures, the interaction between a finite element tool and optimisation tool needed a practical solution. The developed method and computer programs were tested with standard optimisation tests and practical design optimisation cases. Three generations of computer programs are developed. The programs combine anoptimisation problem modelling tool and FE-modelling program using three alternate methdos. The modelling and optimisation was demonstrated in the design of a new boom construction and steel structures of flat and ridge roofs. This thesis demonstrates that the most time consuming modelling time is significantly reduced. Modelling errors are reduced and the results are more reliable. A new selection rule for the evolution algorithm, which eliminates the need for constraint weight factors is tested with optimisation cases of the steel structures that include hundreds of constraints. It is seen that the tested algorithm can be used nearly as a black box without parameter settings and penalty factors of the constraints.
Resumo:
OBJECTIVES: The aim of the study was to statistically model the relative increased risk of cardiovascular disease (CVD) per year older in Data collection on Adverse events of anti-HIV Drugs (D:A:D) and to compare this with the relative increased risk of CVD per year older in general population risk equations. METHODS: We analysed three endpoints: myocardial infarction (MI), coronary heart disease (CHD: MI or invasive coronary procedure) and CVD (CHD or stroke). We fitted a number of parametric age effects, adjusting for known risk factors and antiretroviral therapy (ART) use. The best-fitting age effect was determined using the Akaike information criterion. We compared the ageing effect from D:A:D with that from the general population risk equations: the Framingham Heart Study, CUORE and ASSIGN risk scores. RESULTS: A total of 24 323 men were included in analyses. Crude MI, CHD and CVD event rates per 1000 person-years increased from 2.29, 3.11 and 3.65 in those aged 40-45 years to 6.53, 11.91 and 15.89 in those aged 60-65 years, respectively. The best-fitting models included inverse age for MI and age + age(2) for CHD and CVD. In D:A:D there was a slowly accelerating increased risk of CHD and CVD per year older, which appeared to be only modest yet was consistently raised compared with the risk in the general population. The relative risk of MI with age was not different between D:A:D and the general population. CONCLUSIONS: We found only limited evidence of accelerating increased risk of CVD with age in D:A:D compared with the general population. The absolute risk of CVD associated with HIV infection remains uncertain.
Resumo:
The aim of the present study was to identify Candida albicans transcription factors (TFs) involved in virulence. Although mice are considered the gold-standard model to study fungal virulence, mini-host infection models have been increasingly used. Here, barcoded TF mutants were first screened in mice by pools of strains and fungal burdens (FBs) quantified in kidneys. Mutants of unannotated genes which generated a kidney FB significantly different from that of wild-type were selected and individually examined in Galleria mellonella. In addition, mutants that could not be detected in mice were also tested in G. mellonella. Only 25% of these mutants displayed matching phenotypes in both hosts, highlighting a significant discrepancy between the two models. To address the basis of this difference (pool or host effects), a set of 19 mutants tested in G. mellonella were also injected individually into mice. Matching FB phenotypes were observed in 50% of the cases, highlighting the bias due to host effects. In contrast, 33.4% concordance was observed between pool and single strain infections in mice, thereby highlighting the bias introduced by the "pool effect." After filtering the results obtained from the two infection models, mutants for MBF1 and ZCF6 were selected. Independent marker-free mutants were subsequently tested in both hosts to validate previous results. The MBF1 mutant showed impaired infection in both models, while the ZCF6 mutant was only significant in mice infections. The two mutants showed no obvious in vitro phenotypes compared with the wild-type, indicating that these genes might be specifically involved in in vivo adapt.
Resumo:
Several methods and approaches for measuring parameters to determine fecal sources of pollution in water have been developed in recent years. No single microbial or chemical parameter has proved sufficient to determine the source of fecal pollution. Combinations of parameters involving at least one discriminating indicator and one universal fecal indicator offer the most promising solutions for qualitative and quantitative analyses. The universal (nondiscriminating) fecal indicator provides quantitative information regarding the fecal load. The discriminating indicator contributes to the identification of a specific source. The relative values of the parameters derived from both kinds of indicators could provide information regarding the contribution to the total fecal load from each origin. It is also essential that both parameters characteristically persist in the environment for similar periods. Numerical analysis, such as inductive learning methods, could be used to select the most suitable and the lowest number of parameters to develop predictive models. These combinations of parameters provide information on factors affecting the models, such as dilution, specific types of animal source, persistence of microbial tracers, and complex mixtures from different sources. The combined use of the enumeration of somatic coliphages and the enumeration of Bacteroides-phages using different host specific strains (one from humans and another from pigs), both selected using the suggested approach, provides a feasible model for quantitative and qualitative analyses of fecal source identification.
Resumo:
BACKGROUND: Left atrial (LA) dilatation is associated with a large variety of cardiac diseases. Current cardiovascular magnetic resonance (CMR) strategies to measure LA volumes are based on multi-breath-hold multi-slice acquisitions, which are time-consuming and susceptible to misregistration. AIM: To develop a time-efficient single breath-hold 3D CMR acquisition and reconstruction method to precisely measure LA volumes and function. METHODS: A highly accelerated compressed-sensing multi-slice cine sequence (CS-cineCMR) was combined with a non-model-based 3D reconstruction method to measure LA volumes with high temporal and spatial resolution during a single breath-hold. This approach was validated in LA phantoms of different shapes and applied in 3 patients. In addition, the influence of slice orientations on accuracy was evaluated in the LA phantoms for the new approach in comparison with a conventional model-based biplane area-length reconstruction. As a reference in patients, a self-navigated high-resolution whole-heart 3D dataset (3D-HR-CMR) was acquired during mid-diastole to yield accurate LA volumes. RESULTS: Phantom studies. LA volumes were accurately measured by CS-cineCMR with a mean difference of -4.73 ± 1.75 ml (-8.67 ± 3.54%, r2 = 0.94). For the new method the calculated volumes were not significantly different when different orientations of the CS-cineCMR slices were applied to cover the LA phantoms. Long-axis "aligned" vs "not aligned" with the phantom long-axis yielded similar differences vs the reference volume (-4.87 ± 1.73 ml vs. -4.45 ± 1.97 ml, p = 0.67) and short-axis "perpendicular" vs. "not-perpendicular" with the LA long-axis (-4.72 ± 1.66 ml vs. -4.75 ± 2.13 ml; p = 0.98). The conventional bi-plane area-length method was susceptible for slice orientations (p = 0.0085 for the interaction of "slice orientation" and "reconstruction technique", 2-way ANOVA for repeated measures). To use the 3D-HR-CMR as the reference for LA volumes in patients, it was validated in the LA phantoms (mean difference: -1.37 ± 1.35 ml, -2.38 ± 2.44%, r2 = 0.97). Patient study: The CS-cineCMR LA volumes of the mid-diastolic frame matched closely with the reference LA volume (measured by 3D-HR-CMR) with a difference of -2.66 ± 6.5 ml (3.0% underestimation; true LA volumes: 63 ml, 62 ml, and 395 ml). Finally, a high intra- and inter-observer agreement for maximal and minimal LA volume measurement is also shown. CONCLUSIONS: The proposed method combines a highly accelerated single-breathhold compressed-sensing multi-slice CMR technique with a non-model-based 3D reconstruction to accurately and reproducibly measure LA volumes and function.
Resumo:
Single-stranded DNA (ssDNA) plays a major role in several biological processes. It is therefore of fundamental interest to understand how the elastic response and the formation of secondary structures are modulated by the interplay between base pairing and electrostatic interactions. Here we measure force-extension curves (FECs) of ssDNA molecules in optical tweezers set up over two orders of magnitude of monovalent and divalent salt conditions, and obtain its elastic parameters by fitting the FECs to semiflexible models of polymers. For both monovalent and divalent salts, we find that the electrostatic contribution to the persistence length is proportional to the Debye screening length, varying as the inverse of the square root of cation concentration. The intrinsic persistence length is equal to 0.7 nm for both types of salts, and the effectivity of divalent cations in screening electrostatic interactions appears to be 100-fold as compared with monovalent salt, in line with what has been recently reported for single-stranded RNA. Finally, we propose an analysis of the FECs using a model that accounts for the effective thickness of the filament at low salt condition and a simple phenomenological description that quantifies the formation of non-specific secondary structure at low forces.
Resumo:
1. Species distribution models (SDMs) have become a standard tool in ecology and applied conservation biology. Modelling rare and threatened species is particularly important for conservation purposes. However, modelling rare species is difficult because the combination of few occurrences and many predictor variables easily leads to model overfitting. A new strategy using ensembles of small models was recently developed in an attempt to overcome this limitation of rare species modelling and has been tested successfully for only a single species so far. Here, we aim to test the approach more comprehensively on a large number of species including a transferability assessment. 2. For each species numerous small (here bivariate) models were calibrated, evaluated and averaged to an ensemble weighted by AUC scores. These 'ensembles of small models' (ESMs) were compared to standard Species Distribution Models (SDMs) using three commonly used modelling techniques (GLM, GBM, Maxent) and their ensemble prediction. We tested 107 rare and under-sampled plant species of conservation concern in Switzerland. 3. We show that ESMs performed significantly better than standard SDMs. The rarer the species, the more pronounced the effects were. ESMs were also superior to standard SDMs and their ensemble when they were independently evaluated using a transferability assessment. 4. By averaging simple small models to an ensemble, ESMs avoid overfitting without losing explanatory power through reducing the number of predictor variables. They further improve the reliability of species distribution models, especially for rare species, and thus help to overcome limitations of modelling rare species.
Resumo:
The use of private funding and management is enjoying an increasing trend in airports. The literature has not paid enough attention to the mixed management models in this industry, although many European airports take the form of mixed public-private companies, where ownership is shared between public and private sectors. We examine the determinants of the degree of private participation in the European airport sector. Drawing on a sample of the 100 largest European airports, we estimate a multivariate equation in order to determine the role of airport characteristics, fiscal variables, and political factors on the extent of private involvement. Our results confirm the alignment between public and private interests in partially privatized airports. Fiscal constraints and market attractiveness promote private participation. Integrated governance models and the share of network carriers prevent the presence of private ownership, while the degree of private participation appears to be pragmatic rather than ideological.
Resumo:
The use of private funding and management enjoys an increasing trend in airports. The literature has not paid enough attention to the mixed management models in this industry, although many European airports take the form of mixed firms or Institutional PPP, where ownership is shared between public and private sectors. We examine the determinants of the degree of private participation in the European airport sector. Drawing on a sample of the 100 largest European airports we estimate a multivariate equation in order to determine the role of airport characteristics, fiscal variables and political factors on the extent of private involvement. Our results confirm the alignment between public and private interests in PPPs. Fiscal constraints and market attractiveness promote private participation. Integrated governance models and the share of network carriers prevent the presence of private ownership, while the degree of private participation appears to be pragmatic rather than ideological.
Resumo:
BACKGROUND: Risky single-occasion drinking (RSOD) is a prevalent and potentially harmful alcohol use pattern associated with increased alcohol use disorder (AUD). However, RSOD is commonly associated with a higher level of alcohol intake, and most studies have not controlled for drinking volume (DV). Thus, it is unclear whether the findings provide information about RSOD or DV. This study sought to investigate the independent and combined effects of RSOD and DV on AUD. METHODS: Data were collected in the longitudinal Cohort Study on Substance Use Risk Factors (C-SURF) among 5598 young Swiss male alcohol users in their early twenties. Assessment included DV, RSOD, and AUD at two time points. Generalized linear models for binomial distributions provided evidence regarding associations of DV, RSOD, and their interaction. RESULTS: DV, RSOD, and their interaction were significantly related to the number of AUD criteria. The slope of the interaction was steeper for non/rare RSOD than for frequent RSOD. CONCLUSIONS: RSOD appears to be a harmful pattern of drinking, associated with increased AUD and it moderated the relationship between DV and AUD. This study highlighted the importance of taking drinking patterns into account, for both research and public health planning, since RSO drinkers constitute a vulnerable subgroup for AUD.
Resumo:
The present study was performed in an attempt to develop an in vitro integrated testing strategy (ITS) to evaluate drug-induced neurotoxicity. A number of endpoints were analyzed using two complementary brain cell culture models and an in vitro blood-brain barrier (BBB) model after single and repeated exposure treatments with selected drugs that covered the major biological, pharmacological and neuro-toxicological responses. Furthermore, four drugs (diazepam, cyclosporine A, chlorpromazine and amiodarone) were tested more in depth as representatives of different classes of neurotoxicants, inducing toxicity through different pathways of toxicity. The developed in vitro BBB model allowed detection of toxic effects at the level of BBB and evaluation of drug transport through the barrier for predicting free brain concentrations of the studied drugs. The measurement of neuronal electrical activity was found to be a sensitive tool to predict the neuroactivity and neurotoxicity of drugs after acute exposure. The histotypic 3D re-aggregating brain cell cultures, containing all brain cell types, were found to be well suited for OMICs analyses after both acute and long term treatment. The obtained data suggest that an in vitro ITS based on the information obtained from BBB studies and combined with metabolomics, proteomics and neuronal electrical activity measurements performed in stable in vitro neuronal cell culture systems, has high potential to improve current in vitro drug-induced neurotoxicity evaluation.