881 resultados para Silicon oil, interface forces, surface potential, AFM forces, PDMS interface forces.


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this article, we explore the possibility of modifying the silicon nanocrystal areal density in SiOx single layers, while keeping constant their size. For this purpose, a set of SiOx monolayers with controlled thickness between two thick SiO2 layers has been fabricated, for four different compositions (x=1, 1.25, 1.5, or 1.75). The structural properties of the SiO x single layers have been analyzed by transmission electron microscopy (TEM) in planar view geometry. Energy-filtered TEM images revealed an almost constant Si-cluster size and a slight increase in the cluster areal density as the silicon content increases in the layers, while high resolution TEM images show that the size of the Si crystalline precipitates largely decreases as the SiO x stoichiometry approaches that of SiO2. The crystalline fraction was evaluated by combining the results from both techniques, finding a crystallinity reduction from 75% to 40%, for x = 1 and 1.75, respectively. Complementary photoluminescence measurements corroborate the precipitation of Si-nanocrystals with excellent emission properties for layers with the largest amount of excess silicon. The integrated emission from the nanoaggregates perfectly scales with their crystalline state, with no detectable emission for crystalline fractions below 40%. The combination of the structural and luminescence observations suggests that small Si precipitates are submitted to a higher compressive local stress applied by the SiO2 matrix that could inhibit the phase separation and, in turn, promotes the creation of nonradiative paths.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper investigates the fiscal sustainability of an emerging, dollarized, oil-exporting country: Ecuador. A cointegrated VAR approach is adopted in testing, first, if the intertemporal budget constraint is satisfied in Ecuador and, second, in identifying the permanent and transitory shocks that affect a fiscal policy characterized by inertia and a heavy dependence on oil revenues. Following confirmation that the debt-GDP ratio does not place the Ecuadorian budget under any pressure, we reformulate the model and identify two forces that push the fiscal system out of equilibrium, namely, economic activity and oil revenues implemented in the government budget. We argue that Ecuador needs to recover control of its monetary policy and to promote the diversification of its economy in order that non-oil tax revenues can replace oil revenues as a pushing force. Finally, we calculate quarterly elasticities of tax revenues with respect to Ecuador’s GDP and that of eight Eurozone countries. We illustrate graphically how the Eurozone countries with low positive or high negative elasticities’ levels suffer debt problems after the crisis. This finding emphasizes the pressing need for Ecuador to strengthen the connection between its tax revenues and output, and also suggests that the convergence of these elasticities in the Eurozone might contribute to the success of an eventually future fiscal union.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis is focused on process intensification. Several significant problems and applications of this theme are covered. Process intensification is nowadays one of the most popular trends in chemical engineering and attempts have been made to develop a general, systematic methodology for intensification. This seems, however, to be very difficult, because intensified processes are often based on creativity and novel ideas. Monolith reactors and microreactors are successful examples of process intensification. They are usually multichannel devices in which a proper feed technique is important for creating even fluid distribution into the channels. Two different feed techniques were tested for monoliths. In the first technique a shower method was implemented by means of perforated plates. The second technique was a dispersion method using static mixers. Both techniques offered stable operation and uniform fluid distribution. The dispersion method enabled a wider operational range in terms of liquid superficial velocity. Using dispersion method, a volumetric gas-liquid mass transfer coefficient of 2 s-1 was reached. Flow patterns play a significant role in terms of the mixing performance of micromixers. Although the geometry of a T-mixer is simple, channel configurations and dimensions had a clear effect on mixing efficiency. The flow in the microchannel was laminar, but the formation of vortices promoted mixing in micro T-mixers. The generation of vortices was dependent on the channel dimensions, configurations and flow rate. Microreactors offer a high ratio of surface area to volume. Surface forces and interactions between fluids and surfaces are, therefore, often dominant factors. In certain cases, the interactions can be effectively utilised. Different wetting properties of solid materials (PTFE and stainless steel) were applied in the separation of immiscible liquid phases. A micro-scale plate coalescer with hydrophilic and hydrophobic surfaces was used for the continuous separation of organic and aqueous phases. Complete phase separation occurred in less than 20 seconds, whereas the separation time by settling exceeded 30 min. Fluid flows can be also intensified in suitable conditions. By adding certain additives into turbulent fluid flow, it was possible to reduce friction (drag) by 40 %. Drag reduction decreases frictional pressure drop in pipelines which leads to remarkable energy savings and decreases the size or number of pumping facilities required, e.g., in oil transport pipes. Process intensification enables operation often under more optimal conditions. The consequent cost savings from reduced use of raw materials and reduced waste lead to greater economic benefits in processing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The singular properties of hydrogenated amorphous carbon (a-C:H) thin filmsdeposited by pulsed DC plasma enhanced chemical vapor deposition (PECVD), such as hardness and wear resistance, make it suitable as protective coating with low surface energy for self-assembly applications. In this paper, we designed fluorine-containing a-C:H (a-C:H:F) nanostructured surfaces and we characterized them for self-assembly applications. Sub-micron patterns were generated on silicon through laser lithography while contact angle measurements, nanotribometer, atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to characterize the surface. a-C:H:F properties on lithographied surfaces such as hydrophobicity and friction were improved with the proper relative quantity of CH4 and CHF3 during deposition, resulting in ultrahydrophobic samples and low friction coefficients. Furthermore, these properties were enhanced along the direction of the lithographypatterns (in-plane anisotropy). Finally, self-assembly properties were tested with silicananoparticles, which were successfully assembled in linear arrays following the generated patterns. Among the main applications, these surfaces could be suitable as particle filter selector and cell colony substrate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A simple low-cost flow cell was developed, built and optimized in order to observe dynamic interfacial tension of continuous flow systems. Distinct materials can be used in one of the cell walls in order to observe the intermolecular forces between the flowing liquid and the chemical constitution of the walls. The fluorescence depolarization was evaluated using Rhodamine B as fluorescent probe seeded in ethylene glycol. The effects of the positioning angles on the data acquired across the cell are reported. The reproducibility of the data was evaluated with a spectrometer assembled in-house and the relative standard deviation was below 3%.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The development of load-bearing osseous implant with desired mechanical and surface properties in order to promote incorporation with bone and to eliminate risk of bone resorption and implant failure is a very challenging task. Bone formation and resoption processes depend on the mechanical environment. Certain stress/strain conditions are required to promote new bone growth and to prevent bone mass loss. Conventional metallic implants with high stiffness carry most of the load and the surrounding bone becomes virtually unloaded and inactive. Fibre-reinforced composites offer an interesting alternative to metallic implants, because their mechanical properties can be tailored to be equal to those of bone, by the careful selection of matrix polymer, type of fibres, fibre volume fraction, orientation and length. Successful load transfer at bone-implant interface requires proper fixation between the bone and implant. One promising method to promote fixation is to prepare implants with porous surface. Bone ingrowth into porous surface structure stabilises the system and improves clinical success of the implant. The experimental part of this work was focused on polymethyl methacrylate (PMMA) -based composites with dense load-bearing core and porous surface. Three-dimensionally randomly orientated chopped glass fibres were used to reinforce the composite. A method to fabricate those composites was developed by a solvent treatment technique and some characterisations concerning the functionality of the surface structure were made in vitro and in vivo. Scanning electron microscope observations revealed that the pore size and interconnective porous architecture of the surface layer of the fibre-reinforced composite (FRC) could be optimal for bone ingrowth. Microhardness measurements showed that the solvent treatment did not have an effect on the mechanical properties of the load-bearing core. A push-out test, using dental stone as a bone model material, revealed that short glass fibre-reinforced porous surface layer is strong enough to carry load. Unreacted monomers can cause the chemical necrosis of the tissue, but the levels of leachable resisidual monomers were considerably lower than those found in chemically cured fibre-reinforced dentures and in modified acrylic bone cements. Animal experiments proved that surface porous FRC implant can enhance fixation between bone and FRC. New bone ingrowth into the pores was detected and strong interlocking between bone and the implant was achieved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ability of bacteria to attach to surface and develop into a biofilm has been of considerable interest to food industry. Electrostatic, Lifhistz-van der Waals and Lewis acid-base forces are usually considered responsible for the interactions at the interface of the bacterial adhesion. The study of microbial adhesion thermodynamic is important because it represents the reflection of microbial surface and food processing surface physicochemical characteristics. This review examines the most important aspects involved in bacterial attachment to a surface with emphases in thermodynamics of adhesion process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Intermolecular forces are a useful concept that can explain the attraction between particulate matter as well as numerous phenomena in our lives such as viscosity, solubility, drug interactions, and dyeing of fibers. However, studies show that students have difficulty understanding this important concept, which has led us to develop a free educational software in English and Portuguese. The software can be used interactively by teachers and students, thus facilitating better understanding. Professors and students, both graduate and undergraduate, were questioned about the software quality and its intuitiveness of use, facility of navigation, and pedagogical application using a Likert scale. The results led to the conclusion that the developed computer application can be characterized as an auxiliary tool to assist teachers in their lectures and students in their learning process of intermolecular forces.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The properties of the paper surface play a crucial role in ensuring suitable quality and runnability in various converting and finishing operations, such as printing. Plasma surface modification makes it possible to modify the surface chemistry of paper without altering the bulk material properties. This also makes it possible to investigate the role of the surface chemistry alone on printability without influencing the porous structure of the pigment-coated paper. Since the porous structure of a pigment coating controls both ink setting and optical properties, surface chemical changes created by a plasma modification have a potential to decouple these two effects and to permit a better optimization of them both. The aim of this work was to understand the effects of plasma surface modification on paper properties, and how it influences printability in the sheet-fed offset process. The objective was to broaden the fundamental understanding of the role of surface chemistry on offset printing. The effects of changing the hydrophilicity/ hydrophobicity and the surface chemical composition by plasma activation and plasma coatings on the properties of coated paper and on ink-paper interactions as well as on sheet-fed offset print quality were investigated. In addition, the durability of the plasma surface modification was studied. Nowadays, a typical sheet-fed offset press also contains units for surface finishing, for example UVvarnishing. The role of the surface chemistry on the UV-varnish absorption into highly permeable and porous pigment-coated paper was also investigated. With plasma activation it was possible to increase the surface energy and hydrophilicity of paper. Both polar and dispersion interactions were found to increase, although the change was greater in the polar interactions due to induced oxygen molecular groups. The results indicated that plasma activation takes place particularly in high molecular weight components such as the dispersion chemicals used to stabilize the pigment and latex particles. Surface composition, such as pigment and binder type, was found to influence the response to the plasma activation. The general trend was that pilot-scale treatment modified the surface chemistry without altering the physical coating structure, whereas excessive laboratory-scale treatment increased the surface roughness and reduced the surface strength, which led to micro-picking in printing. It was shown that pilot-scale plasma activation in combination with appropriate ink oils makes it possible to adjust the ink-setting rate. The ink-setting rate decreased with linseed-oil-based inks, probably due to increased acid-base interactions between the polar groups in the oil and the plasma-treated paper surface. With mineral-oil-based inks, the ink setting accelerated due to plasma activation. Hydrophobic plasma coatings were able to reduce or even prevent the absorption of dampening water into pigmentcoated paper, even when the dampening water was applied under the influence of nip pressure. A uniform hydrophobic plasma coating with sufficient chemical affinity with ink gave an improved print quality in terms of higher print density and lower print mottle. It was also shown that a fluorocarbon plasma coating reduced the free wetting of the UV-varnish into the highly permeable and porous pigment coating. However, when the UV-varnish was applied under the influence of nip pressure, which leads to forced wetting, the role of the surface chemical composition seems to be much less. A decay in surface energy and wettability occurred during the first weeks of storage after plasma activation, after which it leveled off. However, the oxygen/carbon elemental ratio did not decrease as a function of time, indicating that ageing could be caused by a re-orientation of polar groups or by a contamination of the surface. The plasma coatings appeared to be more stable when the hydrophobicity was higher, probably due to fewer interactions with oxygen and water vapor in the air.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Since the introduction of automatic orbital welding in pipeline application in 1961, significant improvements have been obtained in orbital pipe welding systems. Requirement of more productive welding systems for pipeline application forces manufacturers to innovate new advanced systems and welding processes for orbital welding method. Various methods have been used to make welding process adaptive, such as visual sensing, passive visual sensing, real-time intelligent control, scan welding technique, multi laser vision sensor, thermal scanning, adaptive image processing, neural network model, machine vision, and optical sensing. Numerous studies are reviewed and discussed in this Master’s thesis and based on a wide range of experiments which already have been accomplished by different researches the vision sensor are reported to be the best choice for adaptive orbital pipe welding system. Also, in this study the most welding processes as well as the most pipe variations welded by orbital welding systems mainly for oil and gas pipeline applications are explained. The welding results show that Gas Metal Arc Welding (GMAW) and its variants like Surface Tension Transfer (STT) and modified short circuit are the most preferred processes in the welding of root pass and can be replaced to the Gas Tungsten Arc Welding (GTAW) in many applications. Furthermore, dual-tandem gas metal arc welding technique is currently considered the most efficient method in the welding of fill pass. Orbital GTAW process mostly is applied for applications ranging from single run welding of thin walled stainless tubes to multi run welding of thick walled pipes. Flux cored arc welding process is faster process with higher deposition rate and recently this process is getting more popular in pipe welding applications. Also, combination of gas metal arc welding and Nd:YAG laser has shown acceptable results in girth welding of land pipelines for oil and gas industry. This Master’s thesis can be implemented as a guideline in welding of pipes and tubes to achieve higher quality and efficiency. Also, this research can be used as a base material for future investigations to supplement present finding.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Offset printing is a popular printing method that is especially suitable for large and fast print jobs. Newspapers, magazines and books are typical examples of products printed with offset method. In high volume printing production high efficiency is essential. Offset printing uses tacky inks that cause serious stress to the paper surface. Dusting and linting are terms that describe how loose and weakly bonded particles are removed from the paper surface in the printing process. The removed particles accumulate in the process causing deteriorating print quality. This forces the printing operators to stop production for washing and cleaning. Time and money are lost. Dusting and linting tendency of paper can be decreased by improving the surface strength of paper. In the present work a method to increase the surface strength of paper was studied. In the literature part offset printing method and challenges related to offset printing are presented. A review of new methods for surface sizing of paper is also presented. The experimental part presents trials where an apparatus for improving paper surface strength was tested and developed in mill scale. Laboratory work supporting the actual mill scale operations is also presented. The acquired results provide a solid base of information to make decisions on how to proceed with research in the present field of study.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The wars the Western armies are involved with today are different from those that were fought in the end of 20th century. To explain this change, the Western military thinkers have come up with various different types of definitions of warfare over the last 30 years, each describing the tendencies involved in the conflicts of the time. The changing nature of conflicts surfaced a new term – hybrid warfare. The term was to describe and explain the multi-modality and complexity of modern day conflict. This thesis seeks the answer for the question: what is the development of thought behind hybrid warfare? In this thesis the Vietnam War (1965-1975) is used as an example of compound warfare focusing on the American involvement in the war. The Second Lebanon War (2006) serves as an example of hybrid warfare. Both case studies include an irregular opposing force, namely National Liberation Front in Vietnam War and Hezbollah in the Second Lebanon War. These two case studies are compared with the term full spectrum operations introduced in the current U.S. Department of Army Field Manual No. 3-0 Operations to see the differences and similarities of each term. The perspective of this thesis is the American point of view. This thesis concludes that hybrid warfare, compound warfare and full spectrum operations are very similar. The first two terms are included in the last one. Although hybrid warfare is not officially defined, it will most likely remain to be used in the discussion in the future, since hybrid wars and hybrid threats are officially accepted terms.