384 resultados para Shrubs.
Resumo:
The federally endangered Karner blue butterfly (Lycaeides melissa samuelis Nabokov) persists in rare oak/pine grassland communities spanning across the Great Lakes region, relying on host plant wild blue lupine (Lupinus perennis). Conservation efforts since 1992 have led to the development of several programs that restore and monitor habitat. This study aims to evaluate Karner blue habitat selection in the state of Wisconsin and develop high-resolution tools for use in conservation efforts. Spatial predictive models developed during this study accurately predicted potential habitat across state properties based on soils and canopy cover, and identified ~51-100% of Karner blue occurrences based on lupine and shrub/tree cover, and focal nectar plant abundance. When evaluated relative to American bison (Bison bison), Karner blues and lupine were more likely to occur in areas of low disturbance, but aggregated where bison were recently present in areas of moderate/high disturbance. Lupine C:N ratio increased relative to cover of shrubs/trees and focal nectar plant abundance and decreased relative to cover of groundlitter. Karner blue density increased with lupine C:N ratio, decreased with nitrogen content, and was not related to phenolic levels. We strongly suggest that areas of different soil textures must be managed differently and that maintenance techniques should generate a mix of shrubs/tree cover (10-45%), groundlitter cover (~10-40%), >5% cover of lupine, and establish an abundance of focal nectar plants. This study provides unique tools for use in conservation and should aid in focusing management efforts and recovery of this species.
Resumo:
Boreal peatlands contain approximately one third of the global soil carbon and are considered net sinks of atmospheric CO2. Water level position is one of the main regulators of CO2 fluxes in northern peatlands because it controls both the thickness of the aerobic layer in peat and plant communities. However, little is known about the role of different plant functional groups and their possible interaction with changing water level in boreal peatlands with regard to CO2 cycling. Climate change may also accelerate changes in hydrological conditions, changing both aerobic conditions and plant communities. To help answer these questions, this study was conducted at a mesocosm facility in Northern Michigan where the aim was to experimentally study the effects of water levels, plant functional groups (sedges, shrubs and mosses) and the possible interaction of these on the CO2 cycle of a boreal peatland ecosystem. The results indicate that Ericaceous shrubs are important in the boreal peatland CO2 cycle. The removal of these plants decreased ecosystem respiration, gross ecosystem production and net ecosystem exchange rates, whereas removing sedges did not show any significant differences in the flux rates. The water level did not significantly affect the flux rates. The amount of aboveground sedge biomass was higher in the low water level sedge treatment plots compared to the high water level sedge plots, possibly because the lowered water level and the removal of Ericaceae released nutrients for sedges to use up.
Resumo:
Over the past decades, vegetation and climate have changed significantly in the Arctic. Deciduous shrub cover is often assumed to expand in tundra landscapes, but more frequent abrupt permafrost thaw resulting in formation of thaw ponds could lead to vegetation shifts towards graminoid-dominated wetland. Which factors drive vegetation changes in the tundra ecosystem are still not sufficiently clear. In this study, the dynamic tundra vegetation model, NUCOM-tundra (NUtrient and COMpetition), was used to evaluate the consequences of climate change scenarios of warming and increasing precipitation for future tundra vegetation change. The model includes three plant functional types (moss, graminoids and shrubs), carbon and nitrogen cycling, water and permafrost dynamics and a simple thaw pond module. Climate scenario simulations were performed for 16 combinations of temperature and precipitation increases in five vegetation types representing a gradient from dry shrub-dominated to moist mixed and wet graminoid-dominated sites. Vegetation composition dynamics in currently mixed vegetation sites were dependent on both temperature and precipitation changes, with warming favouring shrub dominance and increased precipitation favouring graminoid abundance. Climate change simulations based on greenhouse gas emission scenarios in which temperature and precipitation increases were combined showed increases in biomass of both graminoids and shrubs, with graminoids increasing in abundance. The simulations suggest that shrub growth can be limited by very wet soil conditions and low nutrient supply, whereas graminoids have the advantage of being able to grow in a wide range of soil moisture conditions and have access to nutrients in deeper soil layers. Abrupt permafrost thaw initiating thaw pond formation led to complete domination of graminoids. However, due to increased drainage, shrubs could profit from such changes in adjacent areas. Both climate and thaw pond formation simulations suggest that a wetter tundra can be responsible for local shrub decline instead of shrub expansion.
Resumo:
This study tests two general and independent hypotheses with the basic assumption that phytoactive secondary compounds produced by plants evolved primarily as plant defences against competitor plant species. The first hypothesis is that the production and main way of release of phytoactive compounds reflect an adaptive response to climatic conditions. Thus, higher phytoactivity by volatile compounds prevails in plants of hot, dry environments, whereas higher phytoactivity by water-soluble compounds is preponderant in plants from wetter environments. The second hypothesis is that synergy between plant phytoactive compounds is widespread, due to the resulting higher energy efficiency and economy of resources. The first hypothesis was tested on germination and early growth of cucumber treated with either water extracts or volatiles from leaves or vegetative shoot tops of four Mediterranean-type shrubs. The second hypothesis was tested on germination of subterranean clover treated with either water extracts of leaves or vegetative shoot tops of one tree and of three Mediterranean-type shrubs or with each of the three fractions obtained from water extracts. Our data do not support either hypotheses. We found no evidence for higher phytoactivity in volatile compounds released by plants that thrive in hot, dry Mediterranean-type environments. We also found no evidence for the predominance of synergy among the constituents of fractions. To the contrary, we found either antagonism or no interaction of effects among allelopathic compounds.
Resumo:
Juniperus navicularis Gand. is a dioecious endemic conifer that constitutes the understory of seaside pine forests in Portugal, areas currently threatened by increasing urban expansion. The aim of this study is to assess the conservation status of previously known populations of this species located on its core area of distribution. The study was performed in south-west coast of Portugal. Three populations varying in size and pine density were analyzed. Number of individuals, population density, spatial distribution and individual characteristics of junipers were estimated. Female cone, seed characteristics and seed viability were also evaluated. Results suggest that J. navicularis populations are vulnerable because seminal recruitment is scarce, what may lead to a reduction of genetic variability due solely to vegetative propagation. This vulnerability seems to be strongly determined by climatic constraints toward increasing aridity. Ratio between male and female shrubs did not differ from 1:1 in any population. Deviations from 1:1 between mature and non-mature plants were found in all populations, denoting population ageing. Very low seed viability was observed. A major part of described Juniperus navicularis populations have disappeared through direct habitat loss to urban development, loss of fitness in drier and warmer locations and low seed viability. This study is the first to address J. navicularis conservation, and represents a valuable first step toward this species preservation.
Resumo:
The Caatinga, covering about 800.000 km2, is the predominant vegetation type of the semi-arid region of Brazil. The Caatinga biome comprises several phytophysiognomies and floristic compositions, with many endemic species, especially in Fabaceae, Cactaceae, Euphorbiaceae, Bignoniaceae e Combretaceae. Despite considerable advances, the Brazilian semi-arid needs more studies and inventories of biodiversity, especially the Ceará state. On the basis of these considerations, the present study aims to identify the flora and vegetation, in order to characterize the phytophysiognomy in an area of the Caatinga, in locality of Taperuaba, municipality of Sobral, Ceará, Brazil. Field work was conducted in March 2015 and 2016 respectively, in three transects. The life-forms were established in accordance of Raunkiaer´s system. The floristic list is composed of 87 species, distributed in 66 genera and 36 families. The flora comprises 22 Brazilian endemic species. The most representative family was Fabaceae with 15 species, followed by Malvaceae (7) Convolvulaceae (6), Euphorbiaceae (5) and Poaceae (5). The biological spectrum had a high proportion of therophytes (29,9%), chamaephytes (29,9%) and phanerophytes (26,4%). In the area were identified two phytophysiognomies: outcrops communities highlighting succulent phanerophytes (Pilosocereus chrysostele (Vaupel) Byles & G.D. Rowley subsp. cearensis P.J. Braun & Esteves and P. gounellei (F.A.C. Weber) Byles & Rowley), chamaephytes (Encholirium spectabile Mart. ex Schult. & Schult. f. and Lepidaploa chalybaea (Mart. ex DC.) H. Rob.) and therophytes (Mitracarpus baturitensis Sucre), mixed with communities including small trees and shrubs on deeper soil, composed of Cereus jamacaru DC., a succulent phanerophyte, and many woody phanerophytes, such as Cordia oncocalyx Allemão, Crateva trapia L., Mimosa caesalpiniifolia Benth., M. tenuiflora (Willd.) Poir., Poincianella bracteosa (Tul.) L.P. Queiroz and P. pyramidalis (Tul.) L.P. Queiroz.
Resumo:
O Montado, em Portugal, é um complexo sistema silvopastoril de uso da terra, tipicamente Mediterrânico, com diversos estratos de vegetação, incluindo sobreiro e azinheira em várias densidades, onde é frequente a criação de gado. Esta actividade pecuária beneficia das pastagens no sob-coberto, de algumas espécies arbustivas e também das bolotas que caem do coberto arbóreo, contribuindo para evitar a invasão da pastagem por matos. No entanto, dependendo da sua gestão, este gado pode comprometer a regeneração do sistema. Nos últimos 20 anos, os subsídios no âmbito da Política Agrícola Comum da União Europeia têm promovido a criação de gado bovino em detrimento de outras espécies e raças mais leves, bem como a intensificação desta produção. Esta intensificação pode impossibilitar a regeneração natural das árvores ameaçando o equilíbrio do Montado. Por esta razão é necessária uma avaliação focada na criação de gado bovino e nos seus impactos sobre o sistema. O objectivo deste estudo foi obter uma melhor compreensão do funcionamento de uma exploração silvopastoril num sistema de Montado, através da aplicação do Método de Avaliação Emergética e do cálculo de índices emergéticos. Pretende-se assim compreender a melhor forma de o gerir, bem como conceber estratégias que maximizem o fluxo de emergia na exploração. Uma comparação deste método com a avaliação económica permitiu perceber em que aspectos esta pode ser complementada pelo método da avaliação emergética. O método da avaliação emergética permite a avaliação de sistemas multifuncionais complexos à escala de uma exploração individual, fornecendo informação extra em relação à avaliação económica como a renovabilidade dos inputs do sistema, ou a quantidade de fluxos livres da natureza que é valorada por preços de mercado. Este método permite a integração das emternalidades e das externalidades à contabilização económica, transformando uma avaliação tendencialmente separada do seu sistema mais vasto, numa avaliação de um sistema em conexão com aqueles mais vastos nos quais se integra; Abstract: The Montado, in Portugal, is a complex silvo-pastoral system of land use, typically Mediterranean, with different strata of vegetation, including cork and holm oaks in various densities, and where cattle rearing is common. This stockfarm benefits from the herbaceous layer under the trees, as well as from some species in the shrub layer, and also from the acorns faling down from the tree cover, while contributing to prevent the invasion of pastures by shrubs. Nevertheless, depending on its management, livestock can affect the system regeneration. Over the past 20 years, subsidies of the European Union's common agricultural policy have promoted the cattle rearing at expense of other lighter species and breeds, as well as its intensification. This intensification may impair the natural regeneration of trees threatening the balance of the Montado. Therefore an assessment focused on cattle and their impact on the system is required. The purpose of this study was to obtain a better understanding of the functioning of a silvo-pastoral farm in a Montado system, by applying the emergy evaluation method and through the calculation of emergy indices. It is intended to understand the best way to manage and design strategies that maximize the emergy flow on the farm. A comparison of this method with the economic evaluation allowed to realize in what aspects it can be complemented by the emergy evaluation method. The emergy evaluation method alows the assessment of complex multi-functional systems at the scale of an individual farm, providing extra information in relation to economic avaluation as the renewability of the inputs to a system and the amount of free flows of nature that is valued by market prices. This method allows the integration of the emternalities and the externalities to the economic accounting, transforming an evaluation tended separated from its wider system, in an evaluation of a system in connection with the larger ones on which it is incorporated.
Resumo:
The effects of climate change can result in dramatic consequences in specific ecosystems such as montados that are seriously threatened by the absence of cork and holm oak (Quercus suber and Q. rotundifolia) natural regeneration. Shrubs of the genus Cistus, which are among the most important elements of encroached montados, seem to promote soil rehabilitation and enhance oak regeneration (Simões et al. 2009). In this context, we compared the life strategies and evaluated the potential ability of Cistus species to adapt to the increasing drought expected for the Mediterranean region, and thus their role on the sustainability of cork oak montados.
Resumo:
The objective of this study was to determine the maximum depth, structure, diameter and biomass of the roots of common woody species in two savanna physiognomies (savanna woodland and open woody savanna) in Brazil's Pantanal wetland. The root systems of 37 trees and 34 shrubs of 15 savanna species were excavated to measure their length and depth and estimate the total root biomass through allometric relationships with stem diameter at ground level. In general, statistical regression models between root weight and stem diameter at ground level showed a significance of P < 0.05 and R2 values close to or above 0.8. The average depths of the root system in wetland savanna woodland and open woody savanna are 0.8 ± 0.3 m and 0.7 ± 0.2 m, respectively, and differ from the root systems of savanna woody species in non-flooding areas, whose depth usually ranges from 3 to 19 m.Weattribute this difference to the adaptation of woody plant to the shallow water table, particularly during the wet season. This singularity of woody species in wetland savannas is important when considering biomass and carbon stocks for national and global carbon inventories.