964 resultados para Shears (Machine-tools)
Resumo:
The NHS Knowledge and Skills Framework (KSF) has been a driving force in the move to competence-based workforce development in the NHS. Skills for Health has developed national workforce competences that aim to improve behavioural performance, and in turn increase productivity. This article describes five projects established to test Skills for Health national workforce competences, electronic tools and products in different settings in the NHS. Competences and competence tools were used to redesign services, develop job roles, identify skills gaps and develop learning programmes. Reported benefits of the projects included increased clarity and a structured, consistent and standardized approach to workforce development. Findings from the evaluation of the tools were positive in terms of their overall usefulness and provision of related training/support. Reported constraints of using the competences and tools included issues relating to their availability, content and organization. It is recognized that a highly skilled and flexible workforce is important to the delivery of high-quality health care. These projects suggest that Skills for Health competences can be used as a 'common currency' in workforce development in the UK health sector. This would support the need to adapt rapidly to changing service needs.
Resumo:
There is a major effort in medical imaging to develop algorithms to extract information from DTI and HARDI, which provide detailed information on brain integrity and connectivity. As the images have recently advanced to provide extraordinarily high angular resolution and spatial detail, including an entire manifold of information at each point in the 3D images, there has been no readily available means to view the results. This impedes developments in HARDI research, which need some method to check the plausibility and validity of image processing operations on HARDI data or to appreciate data features or invariants that might serve as a basis for new directions in image segmentation, registration, and statistics. We present a set of tools to provide interactive display of HARDI data, including both a local rendering application and an off-screen renderer that works with a web-based viewer. Visualizations are presented after registration and averaging of HARDI data from 90 human subjects, revealing important details for which there would be no direct way to appreciate using conventional display of scalar images.
Resumo:
Everything revolves around desiring-machines and the production of desire… Schizoanalysis merely asks what are the machinic, social and technical indices on a socius that open to desiring-machines (Deleuze & Guattari, 1983, pp. 380-381). Achievement tests like NAPLAN are fairly recent, yet common, education policy initiatives in much of the Western world. They intersect with, use and change pre-existing logics of education, teaching and learning. There has been much written about the form and function of these tests, the ‘stakes’ involved and the effects of their practice. This paper adopts a different “angle of vision” to ask what ‘opens’ education to these regimes of testing(Roy, 2008)? This paper builds on previous analyses of NAPLAN as a modulating machine, or a machine characterised by the increased intensity of connections and couplings. One affect can be “an existential disquiet” as “disciplinary subjects attempt to force coherence onto a disintegrating narrative of self”(Thompson & Cook, 2012, p. 576). Desire operates at all levels of the education assemblage, however our argument is that achievement testing manifests desire as ‘lack’; seen in the desire for improved results, the desire for increased control, the desire for freedom, the desire for acceptance to name a few. For Deleuze and Guattari desire is irreducible to lack, instead desire is productive. As a productive assemblage, education machines operationalise and produce through desire; “Desire is a machine, and the object of the desire is another machine connected to it”(Deleuze & Guattari, 1983, p. 26). This intersection is complexified by the strata at which they occur, the molar and molecular connections and flows they make possible. Our argument is that when attention is paid to the macro and micro connections, the machines built and disassembled as a result of high-stakes testing, a map is constructed that outlines possibilities, desires and blockages within the education assemblage. This schizoanalytic cartography suggests a new analysis of these ‘axioms’ of testing and accountability. It follows the flows and disruptions made possible as different or altered connections are made and as new machines are brought online. Thinking of education machinically requires recognising that “every machine functions as a break in the flow in relation to the machine to which it is connected, but at the same time is also a flow itself, or the production of flow, in relation to the machine connected to it”(Deleuze & Guattari, 1983, p. 37). Through its potential to map desire, desire-production and the production of desire within those assemblages that have come to dominate our understanding of what is possible, Deleuze and Guattari’s method of schizoanalysis provides a provocative lens for grappling with the question of what one can do, and what lines of flight are possible.
Resumo:
The Australian housing sector contributes about a fifth of national greenhouse gas (GHG) emissions. GHG emissions contribute to climate change which leads to an increase in the occurrence or intensity of natural disasters and damage of houses. To ensure housing performance in the face of climate change, various rating tools for residential property have been introduced in different countries. The aim of this paper is to present a preliminary comparison between international and Australian rating tools in terms of purpose, use and sustainability elements for residential property. The methodologies used are to review, classify, compare and identify similarities and differences between rating tools. Two international tools, Building Research Establishment Environmental Assessment Methodology (BREEAM) (UK) and Leadership in Energy and Environmental Design for Homes (LEED-Homes) (USA), will be compared to two Australian tools, Green Star – Multi Unit Residential v1 and EnviroDevelopment. All four rating tools include management, energy, water and material aspects. The findings reveal thirteen elements that fall under three categories: spatial planning, occupants’ health and comfort, and environmental conditions. The variations in different tools may result from differences in local prevailing climate. Not all sustainability elements covered by international rating tools are included in the Australian rating tools. The voluntary nature of the tools implies they are not broadly applied in their respective market and that there is a policy implementation gap. A comprehensive rating tool could be developed in Australia to promote and lessen the confusion about sustainable housing, which in turn assist in improving the supply and demand of sustainable housing.
Resumo:
Lateralization of temporal lobe epilepsy (TLE) is critical for successful outcome of surgery to relieve seizures. TLE affects brain regions beyond the temporal lobes and has been associated with aberrant brain networks, based on evidence from functional magnetic resonance imaging. We present here a machine learning-based method for determining the laterality of TLE, using features extracted from resting-state functional connectivity of the brain. A comprehensive feature space was constructed to include network properties within local brain regions, between brain regions, and across the whole network. Feature selection was performed based on random forest and a support vector machine was employed to train a linear model to predict the laterality of TLE on unseen patients. A leave-one-patient-out cross validation was carried out on 12 patients and a prediction accuracy of 83% was achieved. The importance of selected features was analyzed to demonstrate the contribution of resting-state connectivity attributes at voxel, region, and network levels to TLE lateralization.
Resumo:
The community is the basic unit of urban development, and appropriate assessment tools are needed for communities to evaluate and facilitate decision making concerning sustainable community development and reduce the detrimental effects of urban community actions on the environment. Existing research into sustainable community rating tools focuses primarily on those that are internationally recognized to describe their advantages and future challenges. However, the differences between rating tools due to different regional conditions, situations and characteristics have yet to be addressed. In doing this, this paper examines three sustainable community rating tools in Australia, namely Green Star-Communities PILOT, EnviroDevelopment and VicUrban Sustainability Charter (Master Planned Community Assessment Tool). In order to identify their similarities, differences and advantages these are compared in terms of sustainability coverage, prerequisites, adaptation to locality, scoring and weighting, participation, presentation of results, and application process. These results provide the stakeholders of sustainable community development projects with a better understanding of the available rating tools in Australia and assist with evaluation and decision making.
Resumo:
This thesis presents the results of a study into ways that technology can be appropriated and designed to support urban rail commuters in their daily journeys. The study evaluated a mobile application prototype deployed along the Brisbane passenger rail network. This prototype was designed to support social interaction between passengers sharing the same trains. This thesis provides a step forward in showing the relevance of increasingly creating solutions that contribute to a more enjoyable and attractive public transport service.
Resumo:
In the past few years, the virtual machine (VM) placement problem has been studied intensively and many algorithms for the VM placement problem have been proposed. However, those proposed VM placement algorithms have not been widely used in today's cloud data centers as they do not consider the migration cost from current VM placement to the new optimal VM placement. As a result, the gain from optimizing VM placement may be less than the loss of the migration cost from current VM placement to the new VM placement. To address this issue, this paper presents a penalty-based genetic algorithm (GA) for the VM placement problem that considers the migration cost in addition to the energy-consumption of the new VM placement and the total inter-VM traffic flow in the new VM placement. The GA has been implemented and evaluated by experiments, and the experimental results show that the GA outperforms two well known algorithms for the VM placement problem.
Resumo:
Bayesian networks (BNs) are tools for representing expert knowledge or evidence. They are especially useful for synthesising evidence or belief concerning a complex intervention, assessing the sensitivity of outcomes to different situations or contextual frameworks and framing decision problems that involve alternative types of intervention. Bayesian networks are useful extensions to logic maps when initiating a review or to facilitate synthesis and bridge the gap between evidence acquisition and decision-making. Formal elicitation techniques allow development of BNs on the basis of expert opinion. Such applications are useful alternatives to ‘empty’ reviews, which identify knowledge gaps but fail to support decision-making. Where review evidence exists, it can inform the development of a BN. We illustrate the construction of a BN using a motivating example that demonstrates how BNs can ensure coherence, transparently structure the problem addressed by a complex intervention and assess sensitivity to context, all of which are critical components of robust reviews of complex interventions. We suggest that BNs should be utilised to routinely synthesise reviews of complex interventions or empty reviews where decisions must be made despite poor evidence.
Resumo:
Educating responsive graduates. Graduate competencies include reliability, communication skills and ability to work in teams. Students using Collaborative technologies adapt to a new working environment, working in teams and using collaborative technologies for learning. Collaborative Technologies were used not simply for delivery of learning but innovatively to supplement and enrich research-based learning, providing a space for active engagement and interaction with resources and team. This promotes the development of responsive ‘intellectual producers’, able to effectively communicate, collaborate and negotiate in complex work environments. Exploiting technologies. Students use ‘new’ technologies to work collaboratively, allowing them to experience the reality of distributed workplaces incorporating both flexibility and ‘real’ time responsiveness. Students are responsible and accountable for individual and group work contributions in a highly transparent and readily accessible workspace. This experience provides a model of an effective learning tool. Navigating uncertainty and complexity. Collaborative technologies allows students to develop critical thinking and reflective skills as they develop a group product. In this forum students build resilience by taking ownership and managing group work, and navigating the uncertainties and complexities of group dynamics as they constructively and professionally engage in team dialogue and learn to focus on the goal of the team task.
Resumo:
In this paper, we present a machine learning approach to measure the visual quality of JPEG-coded images. The features for predicting the perceived image quality are extracted by considering key human visual sensitivity (HVS) factors such as edge amplitude, edge length, background activity and background luminance. Image quality assessment involves estimating the functional relationship between HVS features and subjective test scores. The quality of the compressed images are obtained without referring to their original images ('No Reference' metric). Here, the problem of quality estimation is transformed to a classification problem and solved using extreme learning machine (ELM) algorithm. In ELM, the input weights and the bias values are randomly chosen and the output weights are analytically calculated. The generalization performance of the ELM algorithm for classification problems with imbalance in the number of samples per quality class depends critically on the input weights and the bias values. Hence, we propose two schemes, namely the k-fold selection scheme (KS-ELM) and the real-coded genetic algorithm (RCGA-ELM) to select the input weights and the bias values such that the generalization performance of the classifier is a maximum. Results indicate that the proposed schemes significantly improve the performance of ELM classifier under imbalance condition for image quality assessment. The experimental results prove that the estimated visual quality of the proposed RCGA-ELM emulates the mean opinion score very well. The experimental results are compared with the existing JPEG no-reference image quality metric and full-reference structural similarity image quality metric.
Resumo:
Biotechnology has the potential to improve sugar cane, one of the world's major crops for food and fuel. This research describes the detailed characterisation of introns and their potential for enhancing transgene expression in sugar cane via intron-mediated enhancement (IME). IME is a phenomenon whereby an intron enhances gene expression from a promoter. Current knowledge on the mechanism of IME or its potential for enhancing gene expression in sugar cane is limited. A better understanding of the factors responsible for IME will help develop new molecular tools that facilitate high levels of constitutive and tissue-specific gene expression in this crop.
Resumo:
In this paper, downscaling models are developed using a support vector machine (SVM) for obtaining projections of monthly mean maximum and minimum temperatures (T-max and T-min) to river-basin scale. The effectiveness of the model is demonstrated through application to downscale the predictands for the catchment of the Malaprabha reservoir in India, which is considered to be a climatically sensitive region. The probable predictor variables are extracted from (1) the National Centers for Environmental Prediction (NCEP) reanalysis dataset for the period 1978-2000, and (2) the simulations from the third-generation Canadian Coupled Global Climate Model (CGCM3) for emission scenarios A1B, A2, B1 and COMMIT for the period 1978-2100. The predictor variables are classified into three groups, namely A, B and C. Large-scale atmospheric variables Such as air temperature, zonal and meridional wind velocities at 925 nib which are often used for downscaling temperature are considered as predictors in Group A. Surface flux variables such as latent heat (LH), sensible heat, shortwave radiation and longwave radiation fluxes, which control temperature of the Earth's surface are tried as plausible predictors in Group B. Group C comprises of all the predictor variables in both the Groups A and B. The scatter plots and cross-correlations are used for verifying the reliability of the simulation of the predictor variables by the CGCM3 and to Study the predictor-predictand relationships. The impact of trend in predictor variables on downscaled temperature was studied. The predictor, air temperature at 925 mb showed an increasing trend, while the rest of the predictors showed no trend. The performance of the SVM models that are developed, one for each combination of predictor group, predictand, calibration period and location-based stratification (land, land and ocean) of climate variables, was evaluated. In general, the models which use predictor variables pertaining to land surface improved the performance of SVM models for downscaling T-max and T-min
Resumo:
This study investigates the potential of Relevance Vector Machine (RVM)-based approach to predict the ultimate capacity of laterally loaded pile in clay. RVM is a sparse approximate Bayesian kernel method. It can be seen as a probabilistic version of support vector machine. It provides much sparser regressors without compromising performance, and kernel bases give a small but worthwhile improvement in performance. RVM model outperforms the two other models based on root-mean-square-error (RMSE) and mean-absolute-error (MAE) performance criteria. It also stimates the prediction variance. The results presented in this paper clearly highlight that the RVM is a robust tool for prediction Of ultimate capacity of laterally loaded piles in clay.