857 resultados para Service-oriented grid computing


Relevância:

40.00% 40.00%

Publicador:

Resumo:

L’esperimento CMS a LHC ha raccolto ingenti moli di dati durante Run-1, e sta sfruttando il periodo di shutdown (LS1) per evolvere il proprio sistema di calcolo. Tra i possibili miglioramenti al sistema, emergono ampi margini di ottimizzazione nell’uso dello storage ai centri di calcolo di livello Tier-2, che rappresentano - in Worldwide LHC Computing Grid (WLCG)- il fulcro delle risorse dedicate all’analisi distribuita su Grid. In questa tesi viene affrontato uno studio della popolarità dei dati di CMS nell’analisi distribuita su Grid ai Tier-2. Obiettivo del lavoro è dotare il sistema di calcolo di CMS di un sistema per valutare sistematicamente l’ammontare di spazio disco scritto ma non acceduto ai centri Tier-2, contribuendo alla costruzione di un sistema evoluto di data management dinamico che sappia adattarsi elasticamente alle diversi condizioni operative - rimuovendo repliche dei dati non necessarie o aggiungendo repliche dei dati più “popolari” - e dunque, in ultima analisi, che possa aumentare l’“analysis throughput” complessivo. Il Capitolo 1 fornisce una panoramica dell’esperimento CMS a LHC. Il Capitolo 2 descrive il CMS Computing Model nelle sue generalità, focalizzando la sua attenzione principalmente sul data management e sulle infrastrutture ad esso connesse. Il Capitolo 3 descrive il CMS Popularity Service, fornendo una visione d’insieme sui servizi di data popularity già presenti in CMS prima dell’inizio di questo lavoro. Il Capitolo 4 descrive l’architettura del toolkit sviluppato per questa tesi, ponendo le basi per il Capitolo successivo. Il Capitolo 5 presenta e discute gli studi di data popularity condotti sui dati raccolti attraverso l’infrastruttura precedentemente sviluppata. L’appendice A raccoglie due esempi di codice creato per gestire il toolkit attra- verso cui si raccolgono ed elaborano i dati.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Il Cloud Computing è una realtà sempre più diffusa e discussa nel nostro periodo storico, ma probabilmente non è ancora chiaro a tutti di cosa si tratta e le potenzialità che possiede. Infatti, non esiste ancora una definizione univoca e condivisa e questo può creare confusione. Oggi le grandi compagnie nella comunità informatica spingono sempre di più per affermare i servizi Cloud a livello mondiale, non solo per le aziende del settore, ma anche per tutte le altre. Ed è così che le aziende di tutto il mondo si muovono per imparare e adottare questa nuova tecnologia, per spostare i loro centri dati e le loro applicazioni nel Cloud. Ma dove e quando nasce il Cloud Computing? Quali sono realmente i benefici per le aziende che adottano questa tecnologia? Questo è l'obiettivo della mia tesi: cercare di far chiarezza sulla sua definizione, indagare sulla sua nascita e fare un quadro economico del suo sviluppo, analizzando i benefici per le aziende e le opportunità offerte. Come caso di studio ho scelto la piattaforma Cloud Foundry perchè in questo momento è in forte espansione e sta facendo un grosso lavoro per cercare di rendere il suo prodotto uno standard per il Cloud Computing. Come esempio particolare di piattaforma basata su Cloud Foundry si parlerà di Bluemix, la piattaforma Cloud offerta da IBM, una delle più grandi aziende nel settore informatico.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nowadays, data handling and data analysis in High Energy Physics requires a vast amount of computational power and storage. In particular, the world-wide LHC Com- puting Grid (LCG), an infrastructure and pool of services developed and deployed by a ample community of physicists and computer scientists, has demonstrated to be a game changer in the efficiency of data analyses during Run-I at the LHC, playing a crucial role in the Higgs boson discovery. Recently, the Cloud computing paradigm is emerging and reaching a considerable adoption level by many different scientific organizations and not only. Cloud allows to access and utilize not-owned large computing resources shared among many scientific communities. Considering the challenging requirements of LHC physics in Run-II and beyond, the LHC computing community is interested in exploring Clouds and see whether they can provide a complementary approach - or even a valid alternative - to the existing technological solutions based on Grid. In the LHC community, several experiments have been adopting Cloud approaches, and in particular the experience of the CMS experiment is of relevance to this thesis. The LHC Run-II has just started, and Cloud-based solutions are already in production for CMS. However, other approaches of Cloud usage are being thought of and are at the prototype level, as the work done in this thesis. This effort is of paramount importance to be able to equip CMS with the capability to elastically and flexibly access and utilize the computing resources needed to face the challenges of Run-III and Run-IV. The main purpose of this thesis is to present forefront Cloud approaches that allow the CMS experiment to extend to on-demand resources dynamically allocated as needed. Moreover, a direct access to Cloud resources is presented as suitable use case to face up with the CMS experiment needs. Chapter 1 presents an overview of High Energy Physics at the LHC and of the CMS experience in Run-I, as well as preparation for Run-II. Chapter 2 describes the current CMS Computing Model, and Chapter 3 provides Cloud approaches pursued and used within the CMS Collaboration. Chapter 4 and Chapter 5 discuss the original and forefront work done in this thesis to develop and test working prototypes of elastic extensions of CMS computing resources on Clouds, and HEP Computing “as a Service”. The impact of such work on a benchmark CMS physics use-cases is also demonstrated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cloud Computing enables provisioning and distribution of highly scalable services in a reliable, on-demand and sustainable manner. However, objectives of managing enterprise distributed applications in cloud environments under Service Level Agreement (SLA) constraints lead to challenges for maintaining optimal resource control. Furthermore, conflicting objectives in management of cloud infrastructure and distributed applications might lead to violations of SLAs and inefficient use of hardware and software resources. This dissertation focusses on how SLAs can be used as an input to the cloud management system, increasing the efficiency of allocating resources, as well as that of infrastructure scaling. First, we present an extended SLA semantic model for modelling complex service-dependencies in distributed applications, and for enabling automated cloud infrastructure management operations. Second, we describe a multi-objective VM allocation algorithm for optimised resource allocation in infrastructure clouds. Third, we describe a method of discovering relations between the performance indicators of services belonging to distributed applications and then using these relations for building scaling rules that a CMS can use for automated management of VMs. Fourth, we introduce two novel VM-scaling algorithms, which optimally scale systems composed of VMs, based on given SLA performance constraints. All presented research works were implemented and tested using enterprise distributed applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Advancements in cloud computing have enabled the proliferation of distributed applications, which require management and control of multiple services. However, without an efficient mechanism for scaling services in response to changing workload conditions, such as number of connected users, application performance might suffer, leading to violations of Service Level Agreements (SLA) and possible inefficient use of hardware resources. Combining dynamic application requirements with the increased use of virtualised computing resources creates a challenging resource Management context for application and cloud-infrastructure owners. In such complex environments, business entities use SLAs as a means for specifying quantitative and qualitative requirements of services. There are several challenges in running distributed enterprise applications in cloud environments, ranging from the instantiation of service VMs in the correct order using an adequate quantity of computing resources, to adapting the number of running services in response to varying external loads, such as number of users. The application owner is interested in finding the optimum amount of computing and network resources to use for ensuring that the performance requirements of all her/his applications are met. She/he is also interested in appropriately scaling the distributed services so that application performance guarantees are maintained even under dynamic workload conditions. Similarly, the infrastructure Providers are interested in optimally provisioning the virtual resources onto the available physical infrastructure so that her/his operational costs are minimized, while maximizing the performance of tenants’ applications. Motivated by the complexities associated with the management and scaling of distributed applications, while satisfying multiple objectives (related to both consumers and providers of cloud resources), this thesis proposes a cloud resource management platform able to dynamically provision and coordinate the various lifecycle actions on both virtual and physical cloud resources using semantically enriched SLAs. The system focuses on dynamic sizing (scaling) of virtual infrastructures composed of virtual machines (VM) bounded application services. We describe several algorithms for adapting the number of VMs allocated to the distributed application in response to changing workload conditions, based on SLA-defined performance guarantees. We also present a framework for dynamic composition of scaling rules for distributed service, which used benchmark-generated application Monitoring traces. We show how these scaling rules can be combined and included into semantic SLAs for controlling allocation of services. We also provide a detailed description of the multi-objective infrastructure resource allocation problem and various approaches to satisfying this problem. We present a resource management system based on a genetic algorithm, which performs allocation of virtual resources, while considering the optimization of multiple criteria. We prove that our approach significantly outperforms reactive VM-scaling algorithms as well as heuristic-based VM-allocation approaches.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Managing large medical image collections is an increasingly demanding important issue in many hospitals and other medical settings. A huge amount of this information is daily generated, which requires robust and agile systems. In this paper we present a distributed multi-agent system capable of managing very large medical image datasets. In this approach, agents extract low-level information from images and store them in a data structure implemented in a relational database. The data structure can also store semantic information related to images and particular regions. A distinctive aspect of our work is that a single image can be divided so that the resultant sub-images can be stored and managed separately by different agents to improve performance in data accessing and processing. The system also offers the possibility of applying some region-based operations and filters on images, facilitating image classification. These operations can be performed directly on data structures in the database.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Data grid services have been used to deal with the increasing needs of applications in terms of data volume and throughput. The large scale, heterogeneity and dynamism of grid environments often make management and tuning of these data services very complex. Furthermore, current high-performance I/O approaches are characterized by their high complexity and specific features that usually require specialized administrator skills. Autonomic computing can help manage this complexity. The present paper describes an autonomic subsystem intended to provide self-management features aimed at efficiently reducing the I/O problem in a grid environment, thereby enhancing the quality of service (QoS) of data access and storage services in the grid. Our proposal takes into account that data produced in an I/O system is not usually immediately required. Therefore, performance improvements are related not only to current but also to any future I/O access, as the actual data access usually occurs later on. Nevertheless, the exact time of the next I/O operations is unknown. Thus, our approach proposes a long-term prediction designed to forecast the future workload of grid components. This enables the autonomic subsystem to determine the optimal data placement to improve both current and future I/O operations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article presents the principal results of the doctoral thesis “Semantic-oriented Architecture and Models for Personalized and Adaptive Access to the Knowledge in Multimedia Digital Library” by Desislava Ivanova Paneva-Marinova (Institute of Mathematics and Informatics), successfully defended before the Specialised Academic Council for Informatics and Mathematical Modelling on 27 October, 2008.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Presented is webComputing – a general framework of mathematically oriented services including remote access to hardware and software resources for mathematical computations, and web interface to dynamic interactive computations and visualization in a diversity of contexts: mathematical research and engineering, computer-aided mathematical/technical education and distance learning. webComputing builds on the innovative webMathematica technology connecting technical computing system Mathematica to a web server and providing tools for building dynamic and interactive web-interface to Mathematica-based functionality. Discussed are the conception and some of the major components of webComputing service: Scientific Visualization, Domain- Specific Computations, Interactive Education, and Authoring of Interactive Pages.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

* The work is partially supported by the grant of National Academy of Science of Ukraine for the support of scientific researches by young scientists No 24-7/05, " Розробка Desktop Grid-системи і оптимізація її продуктивності ”.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A segment selection method controlled by Quality of Experience (QoE) factors for Dynamic Adaptive Streaming over HTTP (DASH) is presented in this paper. Current rate adaption algorithms aim to eliminate buffer underrun events by significantly reducing the code rate when experiencing pauses in replay. In reality, however, viewers may choose to accept a level of buffer underrun in order to achieve an improved level of picture fidelity or to accept the degradation in picture fidelity in order to maintain the service continuity. The proposed rate adaption scheme in our work can maximize the user QoE in terms of both continuity and fidelity (picture quality) in DASH applications. It is shown that using this scheme a high level of quality for streaming services, especially at low packet loss rates, can be achieved. Our scheme can also maintain a best trade-off between continuity-based quality and fidelity-based quality, by determining proper threshold values for the level of quality intended by clients with different quality requirements. In addition, the integration of the rate adaptation mechanism with the scheduling process is investigated in the context of a mobile communication network and related performances are analyzed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cloud computing realizes the long-held dream of converting computing capability into a type of utility. It has the potential to fundamentally change the landscape of the IT industry and our way of life. However, as cloud computing expanding substantially in both scale and scope, ensuring its sustainable growth is a critical problem. Service providers have long been suffering from high operational costs. Especially the costs associated with the skyrocketing power consumption of large data centers. In the meantime, while efficient power/energy utilization is indispensable for the sustainable growth of cloud computing, service providers must also satisfy a user's quality of service (QoS) requirements. This problem becomes even more challenging considering the increasingly stringent power/energy and QoS constraints, as well as other factors such as the highly dynamic, heterogeneous, and distributed nature of the computing infrastructures, etc. ^ In this dissertation, we study the problem of delay-sensitive cloud service scheduling for the sustainable development of cloud computing. We first focus our research on the development of scheduling methods for delay-sensitive cloud services on a single server with the goal of maximizing a service provider's profit. We then extend our study to scheduling cloud services in distributed environments. In particular, we develop a queue-based model and derive efficient request dispatching and processing decisions in a multi-electricity-market environment to improve the profits for service providers. We next study a problem of multi-tier service scheduling. By carefully assigning sub deadlines to the service tiers, our approach can significantly improve resource usage efficiencies with statistically guaranteed QoS. Finally, we study the power conscious resource provision problem for service requests with different QoS requirements. By properly sharing computing resources among different requests, our method statistically guarantees all QoS requirements with a minimized number of powered-on servers and thus the power consumptions. The significance of our research is that it is one part of the integrated effort from both industry and academia to ensure the sustainable growth of cloud computing as it continues to evolve and change our society profoundly.^