955 resultados para Sentinel organisms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four novel oxapenem compounds (i.e., AM-112, AM-113, AM-114, and AM-115) were investigated for their β-lactamase inhibitory activity against a panel of isolated class A, C, and D enzymes, which included expanded-spectrum β-lactamase enzymes (ESBLs). The oxapenems were potent β-lactamase inhibitors. Activity varied within the group, with AM-113 and AM-114 proving to be the most active compounds. The 50% inhibitory concentrations for these agents were up to 100,000-fold lower than that of clavulanic acid against class C and D enzymes. As a group, the oxapenems were more potent than clavulanic acid against enzymes from all classes. The ability of these compounds to protect ceftazidime from hydrolysis by β-lactamase-producing strains was evaluated by MIC tests that combined ceftazidime and each oxapenem in a 1:1 or 2:1 ratio. The oxapenems markedly reduced the MICs for ceftazidime against class C hyperproducing strains and strains producing TEM- and SHV-derived ESBLs. There was little difference between the activity of 1:1 and 2:1 combinations of ceftazidime and oxapenem. The oxapenems failed to enhance the activity of ceftazidime against derepressed AmpC-producing Pseudomonas aeruginosa strains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Comprehensive Everglades Restoration Plan (CERP) attempts to restore hydrology in the Northern and Southern Estuaries of Florida. Reefs of the Eastern oyster Crassostrea virginica are a dominant feature of the estuaries along the Southwest Florida coast. Oysters are benthic, sessile, filter-feeding organisms that provide ecosystem services by filtering the water column and providing food, shelter and habitat for associated organisms. As such, the species is an excellent sentinel organism for examining the impacts of restoration on estuarine ecosystems. The implementation of CERP attempts to improve: the hydrology and spatial and structural characteristics of oyster reefs, the recruitment and survivorship of C. virginica, and the reef-associated communities of organisms. This project links biological responses and environmental conditions relative to hydrological changes as a means of assessing positive or negative trends in oyster responses and population trends. Using oyster responses, we have developed a communication tool (i.e., Stoplight Report Card) based on CERP performance measures that can distinguish between responses to restoration and natural patterns. The Stoplight Report Card system is a communication tool that uses Monitoring and Assessment Program (MAP) performance measures to grade an estuary's response to changes brought about by anthropogenic input or restoration activities. The Stoplight Report Card consists of both a suitability index score for each organism metric as well as a trend score (− decreasing trend, +/− no change in trend, and + increasing trend). Based on these two measures, a component score (e.g., living density) is calculated by averaging the suitability index score and the trend score. The final index score is obtained by taking the geometric score of each component, which is then translated into a stoplight color for success (green), caution (yellow), or failure (red). Based on the data available for oyster populations and the responses of oysters in the Caloosahatchee Estuary, the system is currently at stage “caution.” This communication tool instantly conveys the status of the indicator and the suitability, while trend curves provide information on progress towards reaching a target. Furthermore, the tool has the advantage of being able to be applied regionally, by species, and collectively, in concert with other species, system-wide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The metabolic rate of organisms may either be viewed as a basic property from which other vital rates and many ecological patterns emerge and that follows a universal allometric mass scaling law; or it may be considered a property of the organism that emerges as a result of the organism's adaptation to the environment, with consequently less universal mass scaling properties. Data on body mass, maximum ingestion and clearance rates, respiration rates and maximum growth rates of animals living in the ocean epipelagic were compiled from the literature, mainly from original papers but also from previous compilations by other authors. Data were read from tables or digitized from graphs. Only measurements made on individuals of know size, or groups of individuals of similar and known size were included. We show that clearance and respiration rates have life-form-dependent allometries that have similar scaling but different elevations, such that the mass-specific rates converge on a rather narrow size-independent range. In contrast, ingestion and growth rates follow a near-universal taxa-independent ~3/4 mass scaling power law. We argue that the declining mass-specific clearance rates with size within taxa is related to the inherent decrease in feeding efficiency of any particular feeding mode. The transitions between feeding mode and simultaneous transitions in clearance and respiration rates may then represent adaptations to the food environment and be the result of the optimization of tradeoffs that allow sufficient feeding and growth rates to balance mortality.