958 resultados para Semantic wikis
Resumo:
Semantic interoperability is essential to facilitate efficient collaboration in heterogeneous multi-site healthcare environments. The deployment of a semantic interoperability solution has the potential to enable a wide range of informatics supported applications in clinical care and research both within as ingle healthcare organization and in a network of organizations. At the same time, building and deploying a semantic interoperability solution may require significant effort to carryout data transformation and to harmonize the semantics of the information in the different systems. Our approach to semantic interoperability leverages existing healthcare standards and ontologies, focusing first on specific clinical domains and key applications, and gradually expanding the solution when needed. An important objective of this work is to create a semantic link between clinical research and care environments to enable applications such as streamlining the execution of multi-centric clinical trials, including the identification of eligible patients for the trials. This paper presents an analysis of the suitability of several widely-used medical ontologies in the clinical domain: SNOMED-CT, LOINC, MedDRA, to capture the semantics of the clinical trial eligibility criteria, of the clinical trial data (e.g., Clinical Report Forms), and of the corresponding patient record data that would enable the automatic identification of eligible patients. Next to the coverage provided by the ontologies we evaluate and compare the sizes of the sets of relevant concepts and their relative frequency to estimate the cost of data transformation, of building the necessary semantic mappings, and of extending the solution to new domains. This analysis shows that our approach is both feasible and scalable.
Resumo:
El aprendizaje basado en problemas se lleva aplicando con éxito durante las últimas tres décadas en un amplio rango de entornos de aprendizaje. Este enfoque educacional consiste en proponer problemas a los estudiantes de forma que puedan aprender sobre un dominio particular mediante el desarrollo de soluciones a dichos problemas. Si esto se aplica al modelado de conocimiento, y en particular al basado en Razonamiento Cualitativo, las soluciones a los problemas pasan a ser modelos que representan el compotamiento del sistema dinámico propuesto. Por lo tanto, la tarea del estudiante en este caso es acercar su modelo inicial (su primer intento de representar el sistema) a los modelos objetivo que proporcionan soluciones al problema, a la vez que adquieren conocimiento sobre el dominio durante el proceso. En esta tesis proponemos KaiSem, un método que usa tecnologías y recursos semánticos para guiar a los estudiantes durante el proceso de modelado, ayudándoles a adquirir tanto conocimiento como sea posible sin la directa supervisión de un profesor. Dado que tanto estudiantes como profesores crean sus modelos de forma independiente, estos tendrán diferentes terminologías y estructuras, dando lugar a un conjunto de modelos altamente heterogéneo. Para lidiar con tal heterogeneidad, proporcionamos una técnica de anclaje semántico para determinar, de forma automática, enlaces entre la terminología libre usada por los estudiantes y algunos vocabularios disponibles en la Web de Datos, facilitando con ello la interoperabilidad y posterior alineación de modelos. Por último, proporcionamos una técnica de feedback semántico para comparar los modelos ya alineados y generar feedback basado en las posibles discrepancias entre ellos. Este feedback es comunicado en forma de sugerencias individualizadas que el estudiante puede utilizar para acercar su modelo a los modelos objetivos en cuanto a su terminología y estructura se refiere. ABSTRACT Problem-based learning has been successfully applied over the last three decades to a diverse range of learning environments. This educational approach consists of posing problems to learners, so they can learn about a particular domain by developing solutions to them. When applied to conceptual modeling, and particularly to Qualitative Reasoning, the solutions to problems are models that represent the behavior of a dynamic system. Therefore, the learner's task is to move from their initial model, as their first attempt to represent the system, to the target models that provide solutions to that problem while acquiring domain knowledge in the process. In this thesis we propose KaiSem, a method for using semantic technologies and resources to scaffold the modeling process, helping the learners to acquire as much domain knowledge as possible without direct supervision from the teacher. Since learners and experts create their models independently, these will have different terminologies and structure, giving rise to a pool of models highly heterogeneous. To deal with such heterogeneity, we provide a semantic grounding technique to automatically determine links between the unrestricted terminology used by learners and some online vocabularies of the Web of Data, thus facilitating the interoperability and later alignment of the models. Lastly, we provide a semantic-based feedback technique to compare the aligned models and generate feedback based on the possible discrepancies. This feedback is communicated in the form of individualized suggestions, which can be used by the learner to bring their model closer in terminology and structure to the target models.
Resumo:
To correctly evaluate semantic technologies and to obtain results that can be easily integrated, we need to put evaluations under the scope of a unique software quality model. This paper presents SemQuaRE, a quality model for semantic technologies. SemQuaRE is based on the SQuaRE standard and describes a set of quality characteristics specific to semantic technologies and the quality measures that can be used for their measurement. It also provides detailed formulas for the calculation of such measures. The paper shows that SemQuaRE is complete with respect to current evaluation trends and that it has been successfully applied in practice.
Resumo:
Publisher PDF
Resumo:
Postprint
Resumo:
Postprint
Resumo:
Research is presented on the semantic structure of 15 emotion terms as measured by judged-similarity tasks for monolingual English-speaking and monolingual and bilingual Japanese subjects. A major question is the relative explanatory power of a single shared model for English and Japanese versus culture-specific models for each language. The data support a shared model for the semantic structure of emotion terms even though some robust and significant differences are found between English and Japanese structures. The Japanese bilingual subjects use a model more like English when performing tasks in English than when performing the same task in Japanese.
Resumo:
A number of neuroimaging findings have been interpreted as evidence that the left inferior frontal gyrus (IFG) subserves retrieval of semantic knowledge. We provide a fundamentally different interpretation, that it is not retrieval of semantic knowledge per se that is associated with left IFG activity but rather selection of information among competing alternatives from semantic memory. Selection demands were varied across three semantic tasks in a single group of subjects. Functional magnetic resonance imaging signal in overlapping regions of left IFG was dependent on selection demands in all three tasks. In addition, the degree of semantic processing was varied independently of selection demands in one of the tasks. The absence of left IFG activity for this comparison counters the argument that the effects of selection can be attributed solely to variations in degree of semantic retrieval. Our findings suggest that it is selection, not retrieval, of semantic knowledge that drives activity in the left IFG.
Resumo:
This paper describes a variety of statistical methods for obtaining precise quantitative estimates of the similarities and differences in the structures of semantic domains in different languages. The methods include comparing mean correlations within and between groups, principal components analysis of interspeaker correlations, and analysis of variance of speaker by question data. Methods for graphical displays of the results are also presented. The methods give convergent results that are mutually supportive and equivalent under suitable interpretation. The methods are illustrated on the semantic domain of emotion terms in a comparison of the semantic structures of native English and native Japanese speaking subjects. We suggest that, in comparative studies concerning the extent to which semantic structures are universally shared or culture-specific, both similarities and differences should be measured and compared rather than placing total emphasis on one or the other polar position.
Resumo:
Three studies investigated the relation between symbolic gestures and words, aiming at discover the neural basis and behavioural features of the lexical semantic processing and integration of the two communicative signals. The first study aimed at determining whether elaboration of communicative signals (symbolic gestures and words) is always accompanied by integration with each other and, if present, this integration can be considered in support of the existence of a same control mechanism. Experiment 1 aimed at determining whether and how gesture is integrated with word. Participants were administered with a semantic priming paradigm with a lexical decision task and pronounced a target word, which was preceded by a meaningful or meaningless prime gesture. When meaningful, the gesture could be either congruent or incongruent with word meaning. Duration of prime presentation (100, 250, 400 ms) randomly varied. Voice spectra, lip kinematics, and time to response were recorded and analyzed. Formant 1 of voice spectra, and mean velocity in lip kinematics increased when the prime was meaningful and congruent with the word, as compared to meaningless gesture. In other words, parameters of voice and movement were magnified by congruence, but this occurred only when prime duration was 250 ms. Time to response to meaningful gesture was shorter in the condition of congruence compared to incongruence. Experiment 2 aimed at determining whether the mechanism of integration of a prime word with a target word is similar to that of a prime gesture with a target word. Formant 1 of the target word increased when word prime was meaningful and congruent, as compared to meaningless congruent prime. Increase was, however, present for whatever prime word duration. In the second study, experiment 3 aimed at determining whether symbolic prime gesture comprehension makes use of motor simulation. Transcranial Magnetic Stimulation was delivered to left primary motor cortex 100, 250, 500 ms after prime gesture presentation. Motor Evoked Potential of First Dorsal Interosseus increased when stimulation occurred 100 ms post-stimulus. Thus, gesture was understood within 100ms and integrated with the target word within 250 ms. Experiment 4 excluded any hand motor simulation in order to comprehend prime word. The effect of the prior presentation of a symbolic gesture on congruent target word processing was investigated in study 3. In experiment 5, symbolic gestures were presented as primes, followed by semantically congruent target word or pseudowords. In this case, lexical-semantic decision was accompanied by a motor simulation at 100ms after the onset of the verbal stimuli. Summing up, the same type of integration with a word was present for both prime gesture and word. It was probably subsequent to understanding of the signal, which used motor simulation for gesture and direct access to semantics for words. However, gesture and words could be understood at the same motor level through simulation if words were preceded by an adequate gestural context. Results are discussed in the prospective of a continuum between transitive actions and emblems, in parallelism with language; the grounded/symbolic content of the different signals evidences relation between sensorimotor and linguistic systems, which could interact at different levels.
Resumo:
In this paper we present the enrichment of the Integration of Semantic Resources based in WordNet (ISR-WN Enriched). This new proposal improves the previous one where several semantic resources such as SUMO, WordNet Domains and WordNet Affects were related, adding other semantic resources such as Semantic Classes and SentiWordNet. Firstly, the paper describes the architecture of this proposal explaining the particularities of each integrated resource. After that, we analyze some problems related to the mappings of different versions and how we solve them. Moreover, we show the advantages that this kind of tool can provide to different applications of Natural Language Processing. Related to that question, we can demonstrate that the integration of semantic resources allows acquiring a multidimensional vision in the analysis of natural language.
Resumo:
In this paper we present an automatic system for the extraction of syntactic semantic patterns applied to the development of multilingual processing tools. In order to achieve optimum methods for the automatic treatment of more than one language, we propose the use of syntactic semantic patterns. These patterns are formed by a verbal head and the main arguments, and they are aligned among languages. In this paper we present an automatic system for the extraction and alignment of syntactic semantic patterns from two manually annotated corpora, and evaluate the main linguistic problems that we must deal with in the alignment process.
Resumo:
In the last few years, there has been a wide development in the research on textual information systems. The goal is to improve these systems in order to allow an easy localization, treatment and access to the information stored in digital format (Digital Databases, Documental Databases, and so on). There are lots of applications focused on information access (for example, Web-search systems like Google or Altavista). However, these applications have problems when they must access to cross-language information, or when they need to show information in a language different from the one of the query. This paper explores the use of syntactic-sematic patterns as a method to access to multilingual information, and revise, in the case of Information Retrieval, where it is possible and useful to employ patterns when it comes to the multilingual and interactive aspects. On the one hand, the multilingual aspects that are going to be studied are the ones related to the access to documents in different languages from the one of the query, as well as the automatic translation of the document, i.e. a machine translation system based on patterns. On the other hand, this paper is going to go deep into the interactive aspects related to the reformulation of a query based on the syntactic-semantic pattern of the request.
Resumo:
In this paper we explore the use of semantic classes in an existing information retrieval system in order to improve its results. Thus, we use two different ontologies of semantic classes (WordNet domain and Basic Level Concepts) in order to re-rank the retrieved documents and obtain better recall and precision. Finally, we implement a new method for weighting the expanded terms taking into account the weights of the original query terms and their relations in WordNet with respect to the new ones (which have demonstrated to improve the results). The evaluation of these approaches was carried out in the CLEF Robust-WSD Task, obtaining an improvement of 1.8% in GMAP for the semantic classes approach and 10% in MAP employing the WordNet term weighting approach.