882 resultados para Selective neck irradiation
Resumo:
We examined how general intelligence, personality, and emotional intelligence-measured as an ability using the MSCEIT-predicted performance on a selective-attention task requiring participants to ignore distracting emotion information. We used a visual prime in which participants saw a pair of faces depicting emotions; their task was to focus on one of the faces (the target) while ignoring the other (the distractor). Next, participants categorized a string of letters (word or nonword), which was either congruent to the target or the distractor. The speed of response to categorizing the string was recorded. Given the emotional nature of the stimuli and the emotional information processing involved in the task, we were surprised to see that none of the MSCEIT branches predicted performance. However, general intelligence and openness to experience reduced response time.
Resumo:
Référence bibliographique : Rol, 57172
Resumo:
Selective cyclooxygenase-2-inhibitors (COX-2) were developed as an alternative to the non-steroidal anti-inflammatory drugs (NSAID) in order to reduce their known gastrointestinal and renal toxicity. Several recent studies have shown the complex mechanism of the cyclooxygenase-2. The inhibition of the COX-2 has effects on renal hemodynamics, renal salt and water retention and may increase the thromboembolic and therefore the cardiovascular risk. The renal toxicity of the COX-2 inhibitors is similar to that of traditional NSAID. Regarding these data, COX-2 inhibitors should be prescribed with much caution to high risk patients, that is, patients with renal failure and/or cardiovascular diseases.
Resumo:
Aggregating brain cell cultures at an advanced maturational stage (20-21 days in vitro) were subjected for 1-3 h to anaerobic (hypoxic) and/or stationary (ischemic) conditions. After restoration of the normal culture conditions, cell loss was estimated by measuring the release of lactate dehydrogenase as well as the irreversible decrease of cell type-specific enzyme activities, total protein and DNA content. Ischemia for 2 h induced significant neuronal cell death. Hypoxia combined with ischemia affected both neuronal and glial cells to different degrees (GABAergic neurons>cholinergic neurons>astrocytes). Hypoxic and ischemic conditions greatly stimulated the uptake of 2-deoxy-D-glucose, indicating increased glucose consumption. Furthermore, glucose restriction (5.5 mM instead of 25 mM) dramatically increased the susceptibility of neuronal and glial cells to hypoxic and ischemic conditions. Glucose media concentrations below 2 mM caused selective neuronal cell death in otherwise normal culture conditions. GABAergic neurons showed a particularly high sensitivity to glucose restriction, hypoxia, and ischemia. The pattern of ischemia-induced changes in vitro showed many similarities to in vivo findings, suggesting that aggregating brain cell cultures provide a useful in vitro model to study pathogenic mechanisms related to brain ischemia.
Resumo:
Precise identification of regulatory T cells is crucial in the understanding of their role in human cancers. Here, we analyzed the frequency and phenotype of regulatory T cells (Tregs), in both healthy donors and melanoma patients, based on the expression of the transcription factor FOXP3, which, to date, is the most reliable marker for Tregs, at least in mice. We observed that FOXP3 expression is not confined to human CD25(+/high) CD4(+) T cells, and that these cells are not homogenously FOXP3(+). The circulating relative levels of FOXP3(+) CD4(+) T cells may fluctuate close to 2-fold over a short period of observation and are significantly higher in women than in men. Further, we showed that FOXP3(+) CD4(+) T cells are over-represented in peripheral blood of melanoma patients, as compared to healthy donors, and that they are even more enriched in tumor-infiltrated lymph nodes and at tumor sites, but not in normal lymph nodes. Interestingly, in melanoma patients, a significantly higher proportion of functional, antigen-experienced FOXP3(+) CD4(+) T was observed at tumor sites, compared to peripheral blood. Together, our data suggest that local accumulation and differentiation of Tregs is, at least in part, tumor-driven, and illustrate a reliable combination of markers for their monitoring in various clinical settings.
Resumo:
There are suggestions of an inverse association between folate intake and serum folate levels and the risk of oral cavity and pharyngeal cancers (OPCs), but most studies are limited in sample size, with only few reporting information on the source of dietary folate. Our study aims to investigate the association between folate intake and the risk of OPC within the International Head and Neck Cancer Epidemiology (INHANCE) Consortium. We analyzed pooled individual-level data from ten case-control studies participating in the INHANCE consortium, including 5,127 cases and 13,249 controls. Odds ratios (ORs) and the corresponding 95% confidence intervals (CIs) were estimated for the associations between total folate intake (natural, fortification and supplementation) and natural folate only, and OPC risk. We found an inverse association between total folate intake and overall OPC risk (the adjusted OR for the highest vs. the lowest quintile was 0.65, 95% CI: 0.43-0.99), with a stronger association for oral cavity (OR = 0.57, 95% CI: 0.43-0.75). A similar inverse association, though somewhat weaker, was observed for folate intake from natural sources only in oral cavity cancer (OR = 0.64, 95% CI: 0.45-0.91). The highest OPC risk was observed in heavy alcohol drinkers with low folate intake as compared to never/light drinkers with high folate (OR = 4.05, 95% CI: 3.43-4.79); the attributable proportion (AP) owing to interaction was 11.1% (95% CI: 1.4-20.8%). Lastly, we reported an OR of 2.73 (95% CI:2.34-3.19) for those ever tobacco users with low folate intake, compared with nevere tobacco users and high folate intake (AP of interaction =10.6%, 95% CI: 0.41-20.8%). Our project of a large pool of case-control studies supports a protective effect of total folate intake on OPC risk.
Resumo:
The CD209 gene family that encodes C-type lectins in primates includes CD209 (DC-SIGN), CD209L (L-SIGN) and CD209L2. Understanding the evolution of these genes can help understand the duplication events generating this family, the process leading to the repeated neck region and identify protein domains under selective pressure. We compiled sequences from 14 primates representing 40 million years of evolution and from three non-primate mammal species. Phylogenetic analyses used Bayesian inference, and nucleotide substitutional patterns were assessed by codon-based maximum likelihood. Analyses suggest that CD209 genes emerged from a first duplication event in the common ancestor of anthropoids, yielding CD209L2 and an ancestral CD209 gene, which, in turn, duplicated in the common Old World primate ancestor, giving rise to CD209L and CD209. K(A)/K(S) values averaged over the entire tree were 0.43 (CD209), 0.52 (CD209L) and 0.35 (CD209L2), consistent with overall signatures of purifying selection. We also assessed the Toll-like receptor (TLR) gene family, which shares with CD209 genes a common profile of evolutionary constraint. The general feature of purifying selection of CD209 genes, despite an apparent redundancy (gene absence and gene loss), may reflect the need to faithfully recognize a multiplicity of pathogen motifs, commensals and a number of self-antigens
Resumo:
Intensity modulated radiotherapy (IMRT) is a conformal radiotherapy that produces concave and irregular target volume dose distributions. IMRT has a potential to reduce the volume of healthy tissue irradiated to a high dose, but this often at the price of an increased volume of normal tissue irradiated to a low dose. Clinical benefits of IMRT are expected to be most pronounced at the body sites where sensitive normal tissues surround or are located next to a target with a complex 3D shape. The irradiation doses needed for tumor control are often markedly higher than the tolerance of the radiation sensitive structures such as the spinal cord, the optic nerves, the eyes, or the salivary glands in the treatment of head and neck cancer. Parotid gland salivary flow is markedly reduced following a cumulative dose of 30 50 Gy given with conventional fractionation and xerostomia may be prevented in most patients using a conformal parotid-sparing radiotherapy technique. However, in cohort studies where IMRT was compared with conventional and conformal radiotherapy techniques in the treatment of laryngeal or oropharyngeal carcinoma, the dosimetric advantage of IMRT translated into a reduction of late salivary toxicity with no apparent adverse impact on the tumor control. IMRT might reduce the radiation dose to the major salivary glands and the risk of permanent xerostomia without compromizing the likelihood for cure. Alternatively, IMRT might allow the target dose escalation at a given level of normal tissue damage. We describe here the clinical results on postirradiation salivary gland function in head and neck cancer patients treated with IMRT, and the technical aspects of IMRT applied. The results suggest that the major salivary gland function can be maintained with IMRT without a need to compromise the clinical target volume dose, or the locoregional control.
Resumo:
In this paper we present the theoretical and methodologicalfoundations for the development of a multi-agentSelective Dissemination of Information (SDI) servicemodel that applies Semantic Web technologies for specializeddigital libraries. These technologies make possibleachieving more efficient information management,improving agent–user communication processes, andfacilitating accurate access to relevant resources. Othertools used are fuzzy linguistic modelling techniques(which make possible easing the interaction betweenusers and system) and natural language processing(NLP) techniques for semiautomatic thesaurus generation.Also, RSS feeds are used as “current awareness bulletins”to generate personalized bibliographic alerts.
Resumo:
Acid-sensing ion channels (ASICs) are neuronal Na(+) channels that belong to the epithelial Na(+) channel/degenerin family. ASICs are transiently activated by a rapid drop in extracellular pH. Conditions of low extracellular pH, such as ischemia and inflammation in which ASICs are thought to be active, are accompanied by increased protease activity. We show here that serine proteases modulate the function of ASIC1a and ASIC1b but not of ASIC2a and ASIC3. We show that protease exposure shifts the pH dependence of ASIC1a activation and steady-state inactivation to more acidic pH. As a consequence, protease exposure leads to a decrease in current response if ASIC1a is activated by a pH drop from pH 7.4. If, however, acidification occurs from a basal pH of approximately 7, protease-exposed ASIC1a shows higher activity than untreated ASIC1a. We provide evidence that this bi-directional regulation of ASIC1a function also occurs in neurons. Thus, we have identified a mechanism that modulates ASIC function and may allow ASIC1a to adapt its gating to situations of persistent extracellular acidification.
Resumo:
BACKGROUND: Selenoproteins are a diverse family of proteins notable for the presence of the 21st amino acid, selenocysteine. Until very recently, all metazoan genomes investigated encoded selenoproteins, and these proteins had therefore been believed to be essential for animal life. Challenging this assumption, recent comparative analyses of insect genomes have revealed that some insect genomes appear to have lost selenoprotein genes. METHODOLOGY/PRINCIPAL FINDINGS: In this paper we investigate in detail the fate of selenoproteins, and that of selenoprotein factors, in all available arthropod genomes. We use a variety of in silico comparative genomics approaches to look for known selenoprotein genes and factors involved in selenoprotein biosynthesis. We have found that five insect species have completely lost the ability to encode selenoproteins and that selenoprotein loss in these species, although so far confined to the Endopterygota infraclass, cannot be attributed to a single evolutionary event, but rather to multiple, independent events. Loss of selenoproteins and selenoprotein factors is usually coupled to the deletion of the entire no-longer functional genomic region, rather than to sequence degradation and consequent pseudogenisation. Such dynamics of gene extinction are consistent with the high rate of genome rearrangements observed in Drosophila. We have also found that, while many selenoprotein factors are concomitantly lost with the selenoproteins, others are present and conserved in all investigated genomes, irrespective of whether they code for selenoproteins or not, suggesting that they are involved in additional, non-selenoprotein related functions. CONCLUSIONS/SIGNIFICANCE: Selenoproteins have been independently lost in several insect species, possibly as a consequence of the relaxation in insects of the selective constraints acting across metazoans to maintain selenoproteins. The dispensability of selenoproteins in insects may be related to the fundamental differences in antioxidant defense between these animals and other metazoans.
Resumo:
INTRODUCTION: Squamous-cell carcinoma of the head and neck (SCCHN) remains a challenging clinical problem, due to the persistent high rate of local and distant failures and the occurrence of secondary primaries. For locally advanced SCCHN, a combination of chemotherapy (CT), radiation or surgery is often used, but there are limitations, which may reduce compliance. Molecular targeted therapies, namely anti-EGFR treatments, are in development with the aim of improving clinical outcomes and mitigating treatment-related toxicities. AREAS COVERED: This review provides an overview of early investigational drugs that target EGFR for the treatment of SCCHN and discusses the ongoing trials in this domain. EXPERT OPINION: Targeted therapies are increasingly used in oncology, especially in SCCHN. Cetuximab has demonstrated a significant improvement in the treatment outcome, both as a curative treatment in combination with radiation therapy and as a palliative treatment in combination with CT; however, it failed to show any benefit in combination with concomitant chemoradiotherapy. Presently, there are many new agents, including monoclonal antibodies and small-molecule tyrosine kinase inhibitors, which are either currently under investigation for or which warrant further investigation for treating SCCHN. The discovery of predictive factors that help to identify patients most likely to respond to EGFR inhibitors as well as patient-customized therapies would help to improve patient outcomes in the future.
Resumo:
Head and neck squamous cell carcinomas are frequently diagnosed at an advanced stage. Their treatment remains controversial, and has to be multidisciplinary. External beam radiotherapy is a recognized treatment option after radical curative surgery in order to improve local control. Different adjuvant treatment options have been studied in order to improve the outcome of these patients. We review in this paper the different prognostic factors indicating an adjuvant treatment and the interest of treatment intensification in bad prognostic patients.