936 resultados para Seedling emergence
Resumo:
The interconnected domains are attracting interest from industries and academia, although this phenomenon, called ‘convergence’ is not new. Organizational research has indeed focused on uncovering co-creation for manufacturing and the industrial organization, with limited implications to entrepreneurship. Although convergence has been characterized as a process connecting seemingly disparate disciplines, it is argued that these studies tend to leave the creative industries unnoticed. With the art market boom and new forms of collaboration riding past the institution-focused arts marketing literature, this thesis takes a leap to uncover the processes of entrepreneurship in the emergence of a cultural product. As a symbolic work of synergism itself, the thesis combines organizational theory with literature in natural sciences and arts. Assuming nonlinearity, a framework is created for analysing aesthetic experience in an empirical event where network actors are connected to multiple contexts. As the focal case in study, the empirical analysis performed for a music festival organized in a skiing resort in the French Alps in March. The researcher attends the festival and models its cocreation process by enquiring from an artist, festival organisers, and a festival visitor. The findings contribute to fields of entrepreneurship, aesthetics and marketing mainly. It is found that the network actors engage in intimate and creative interaction where activity patterns are interrupted and cultural elements combined. This process is considered to both create and destruct value, through identity building, legitimisation, learning, and access to larger audiences, and it is considered particularly useful for domains where resources are too restrained for conventional marketing practices. This thesis uncovered the role of artists and informants and posits that particularly through experience design, this type of skilled individual be regarded more often as a research informant. Future research is encouraged to engage in convergence by experimenting with different fields and research designs, and it is suggested that future studies could arrive at different descriptive results.
Resumo:
Understanding how weed seed germination and emergence respond to environmental factors is critical to determining their adaptive capabilities and potential for infestations, and could also aid in the development of effective control practices. Germination of Ipomoea asarifolia (Desr.) Roem. & Schultz and Stachytarpheta cayennensis (Rich) Vahl. decreased linearly with decreasing osmotic potentials. Also, increasing osmotic stress delayed germination of Ipomoea more than that of Stachytarpheta. Ipomoea germination was insensitive to light, while Stachytarpheta showed a positive photoblastic behavior. Nitrate had a negative effect on germination of Ipomoea seed under both light and dark conditions but stimulated dark germination of Stachytarpheta. Ipomoea emergence was not significantly affected by planting depth. However, for Stachytarpheta emergence was restrited to seeds planted at the soil surface. Emergence of Ipomoea seedlings from greater than 6cm significantly decreased the amount of biomass allocated to roots, while biomass allocated to leaves was decreased for seedlings that emerged from depths greater than 2cm. These germination and emergence responses are discussed in relation to their ecological implications and to weed control strategies.
Resumo:
This study was carried out to investigate the efficiency of several herbicides under field conditions, by post-emergence application onto the entire area, their effect on the control of weeds in young coffee plantations and commercial coffee and bean intercropping system, as well as on both crops. Seedlings of Coffea arabica cv. Red Catuaí with four to six leaf pairs were transplanted to the field and treated according to conventional agronomic practices. A bean and coffee intercropping system was established by sowing three lines of beans in the coffee inter-rows. At the time the herbicides were sprayed, the coffee plants had six to ten leaf pairs; the bean plants, three leaflets; and the weeds were at an early development stage. Fluazifop-p-butyl and clethodim were selective for coffee plants and controlled only Brachiaria plantaginea and Digitaria horizontalis efficiently. Broad-leaved weeds (Amaranthus retroflexus, Bidens pilosa, Coronopus didymus, Emilia sonchifolia, Galinsoga parviflora, Ipomoea grandifolia, Lepidium virginicum, and Raphanus raphanistrum) were controlled with high efficiency by sole applications of fomesafen, flazasulfuron, and oxyfluorfen, except B. pilosa, C. didymus, and R. raphanistrum for oxyfluorfen. Sequential applications in seven-day intervals of fomesafen + fluazifop-p-butyl, or clethodim, and two commercial mixtures of fomesafen + fluazifop-p-butyl simultaneously controlled both types of weed. Cyperus rotundus was only controlled by flazasulfuron. Except for fluazifop-p-butyl and clethodim, all herbicide treatments caused only slight injuries on younger coffee leaves. However, further plant growth was not impaired and coffee plant height and stem diameter were therefore similar in the treatments, as evaluated four months later. Fomesafen, fluazifop-p-butyl, and clethodim, at sole or sequential application, and the commercial mixtures of fomesafen + fluazifop-p-butyl were also highly selective for bean crop; thus at doses recommended for bean crop, these herbicides may be applied to control weeds in coffee and bean intercropping systems by spraying the entire area.
Resumo:
Rice is a major staple in many countries. Weed control is one of the factors limiting higher rice yield. ALS (acetolactate synthase)-inhibiting herbicides are desirable weed control herbicides because of their high efficacy, low toxicity to mammalians, and low rates used. An important herbicide characteristic is high selectivity to the crop, since it facilitates fast crop establishment and greater crop advantage over the weeds. The objectives of this work were to study the effects of increasing rates of the ALS-inhibiting herbicide penoxsulam on seed integrity and germination, and seedling and plant development of rice cv. BRS Pelota under controlled laboratory and greenhouse conditions. The results showed that penoxsulam affected rice germination and seedling and plant growth at rates above 54 g a.i. ha-1, and that penoxsulam is safe for rice seedling development at the currently recommended rates.
Resumo:
The effects of competition of seven weed species on the growth of coffee plants were evaluated under greenhouse conditions. Thirty days after coffee seedling transplantation into 12 L pots with soil level area of 6.5 dm², weeds were transplanted into or sown in those pots, at densities of 0, 1, 2, 3, 4 and 5 plants per pot. Competition or weedy periods from weed transplantation or emergence to plant harvesting, at weed pre-flowering stage, were: 77 days - Bidens pilosa, 98 days - Brachiaria decumbens, 180 days - Commelina diffusa, 82 days - Leonurus sibiricus, 68 days - Nicandra physaloides, 148 days - Richardia brasiliensis and 133 days - Sida rhombifolia. Coffee plant height, stem diameter, leaf number and shoot dry matter were determined. Effects of competition by N. physaloides and S. rhombifolia against coffee plants were among the lowest, since only a slight decrease in all the characteristics evaluated in coffee plants was observed. The other weed species caused severe decrease in growth, mainly with increasing weed plant densities. Competition degree was found to depend on weed species and density.
Resumo:
The effects of competition of six weed species on growth, nutrient concentration and nutrient content of coffee plant root system under greenhouse conditions were evaluated. Thirty days after coffee seedling transplantation into 12 L pots with soil level area of 6.5 dm². Weeds were transplanted or sowed in these pots, at densities of 0, 1, 2, 3, 4 and 5 plants per pot. The duration of competition (or weedy periods) from weed transplantation or emergence until plant harvesting, at the weed preflowering stage, were (in days): 77 (Bidens pilosa), 180 (Commelina diffusa), 82 (Leonurus sibiricus), 68 (Nicandra physaloides), 148 (Richardia brasiliensis) and 133 (Sida rhombifolia). Dry matter of coffee plants was linearly reduced with increasing B. pilosa and S. rhombifolia density, with pronounced effect of B. pilosa. C. diffusa was the only weed species whose increasing density in the pots did not diminish crop root dry matter. L. sibiricus, N. physaloides and R. brasiliensis reduced root dry matter of coffee plants by 75, 52 and 47%, respectively, as compared to the weed-free treatment, regardless of weed density. Under competition, even though weed species showed lower macronutrient concentration in the roots (except for P), they accumulated 4.2 (N), 12.3 (P), 4.3 (K), 5.5 (Ca), 7.6 (Mg) and 4.4 (S) times more nutrients in the roots than the coffee plants. Crop and weed nutrient concentration, as well as competition degrees greatly varied depending on both weed species and densities.
Resumo:
The emergence of weed plants depends on environmental conditions, especially temperature and soil moisture. The latter is extremely important in Mediterranean environments which are characterized by irregular amount and distribution of rain throughout the year, which influences the beginning of the growth cycle of the annual species (seed germination). This paper studies the influence of rainfall, in particular accumulated rainfall in autumn, on the emergence of weed plants. The experiment was carried out on Luvisols, and the appearance of flora under field conditions was observed. Through analysis of the results, it can be concluded that a high percentage of weed plants (> 85% related to the highest registered value) was obtained with more than 90 mm of accumulated rainfall from the beginning of September. Thus, in those years in which this amount of rainfall (90 mm) is registered until the end of October, the appearance of potential weed plants can be ensured, under Mediterranean conditions, in a period before sowing the autumn-winter crops.
Resumo:
Decomposing wheat (Triticum aestivum) straw and rhizosphere-infested soil were evaluated for their suppressive activity against horse purslane (Trianthema portulacastrum), a noxious summer weed in Pakistan. Two separate pot studies were carried out. Wheat straw was incorporated at 4, 6 and 8 g kg-1 soil five days before the sowing of horse purslane. Pots without straw incorporation were maintained as control. In a second study, soil was taken from 15 and 30 cm depths from a previously cropped wheat field immediately after its harvest and was used as growing medium. Soil from an intentionally uncropped area of the same field was used as control. Suppressive activity was measured in terms of germination dynamics, seedling growth, and biochemical attributes such as chlorophyll contents, total soluble phenolics, soluble protein and antioxidant enzymes. Germination, seedling growth, chlorophyll contents and soluble protein of horse purslane were all negatively influenced. Higher phenolics and enhanced activities of antioxidant enzymes were noticed in response to wheat residues incorporation and its rhizosphere soil. Both studies established that the phytotoxic influence of wheat straw and wheat-infested rhizosphere soil on horse purslane can further be exploited for horse purslane management as a sustainable approach.
Resumo:
The toxic action of aqueous wheat (Triticum aestivum) straw extracts was investigated on germination, early seedling growth, some biochemical attributes and the antioxidant enzymes of horse purslane (Trianthemaportulacastrum). Aqueous extracts of wheat straw were prepared by soaking the wheat straw in distilled water in 1:10 w/v ratio and diluted to obtain the concentrations of 0, 25, 50, 75 and 100%. These were used as pre and post emergence in laboratory and screen house trials. Wheat aqueous extracts exhibited phytotoxicity to horse purslane by inhibiting and delaying its germination and suppressing seedling growth. Wheat phytotoxins in its aqueous extracts suppressed the chlorophyll content and soluble protein, and enhanced soluble phenolics and the activity of antioxidant enzymes as catalase, peroxidase and superoxide dismutase in the seedlings of horse purslane compared with the control. Such inhibitory activity is believed to originate from exposure to wheat phytotoxins that are present in its aqueous straw extract. The suppressive effects of wheat straw need to be investigated further under field conditions.
Resumo:
Laboratory and greenhouse experiments were conducted to evaluate the phytotoxic effect of black mustard extracts and root exudates on two crops: Trifolium alexandrinum and Triticum aestivum, and two weeds: Phalaris paradoxa and Sisymbrium irio. The seeds were treated with aqueous and ethanolic extracts and chloroform for eight days, or subjected to root exudates of just harvested mustard in a greenhouse for five weeks. High-performance liquid chromatography (HPLC) was used to quantify phytotoxins from plant tissues. Seed germination of P. paradoxa was reduced with the lowest concentration of the different extracts. However, the aqueous extract at 4% completely curtailed the germination of all the target species. In general, plant extracts had a concentration-dependent reduction of seedling growth of the target species. However, the ethanolic extract, at the lowest concentration, has stimulated the shoot length of both T. alexandrinum and T. aestivum, and the root length of the former. Mustard root exudates inhibited emergence and growth of the target species throughout the experiment. Ferulic and syringic acids were the dominant allelochemicals found when HPLC was used.
Resumo:
Experiments were conducted to evaluate the allelopathic influence of Rhynchosia capitata on germination and seedling growth of mungbean (Vigna radiate) along with identification of the phytotoxic substances responsible for this activity. Water extracts of root, shoot, leaf, fruit and whole plant were prepared by soaking them in water in a ratio of 1:20 (w/v) for 24 h. All the extracts affected germination and seedling growth of mungbean, but higher inhibition was seen with R. capitata leaf water extracts. A linear decrease in the germination characteristics of mungbean was observed with the decrease in the concentration of leaf extract from 5% to 1%. The soil-incorporated residues (1-4% w/w) of R. capitata stimulated the growth of root and hypocotyl at low concentrations, while it inhibited their growth at higher concentrations. Rhynchosia capitata soil-incorporated residues (4% w/w) significantly reduced the seedling vigour index of mungbean in addition to their significant effect on total germination. A significant amount of water-soluble phenolic acids were found in R. capitata plant extracts. The content of total phenolic acids was higher in the leaf extract compared to that of the stem, fruit or root extracts. Two phenolic acids including vanillic acid and 4‑(hydroxymethyl) benzoic acid were found in R. capitata leaf extracts.
Resumo:
The resistance of barnyardgrass (Echinochloa crus-galli) to imidazolinone herbicides is a worldwide problem in paddy fields. A rapid diagnosis is required for the selection of adequate prevention and control practices. The objectives of this study were to develop expedite bioassays to identify the resistance to imidazolinone herbicides in barnyardgrass and to evaluate the efficacy of alternative herbicides for the post-emergence control of resistant biotypes. Three experiments were conducted to develop methods for diagnosis of resistance to imazethapyr and imazapyr + imazapic in barnyardgrass at the seed, seedling and tiller stages, and to carry out a pot experiment to determine the efficacy of six herbicides applied at post-emergence in 13 biotypes of barnyardgrass resistant to imidazolinones. The seed soaking bioassay was not able to differentiate the resistant and susceptible biotypes. The resistance of barnyardgrass to imidazolinones was effectively discriminated in the seedlings and tiller bioassays seven days after incubation at the concentrations of 0.001 and 0.0001 mM, respectively, for both imazethapyr and imazapyr + imazapic. The biotypes identified as resistant to imidazolinones showed different patterns of susceptibility to penoxsulam, bispyribac-sodium and pyrazosulfuron-ethyl, and were all controlled with profoxydim and cyhalofop-butyl. The seedling and tiller bioassays are effective in the diagnosis of barnyardgrass resistance to imidazolinone herbicides, providing an on-season opportunity to identify the need to use alternative herbicides to be applied at post-emergence for the control of the resistant biotypes.
Resumo:
A laboratory study was conducted to investigate the allelopathic effect of aqueous extracts of plant parts of Alternanthera philoxeroides and A. sessilis and soil incorporated residues on germination and seedling growth of rice (Oryza sativa). Aqueous extracts prepared from different plant parts of Alternanthera species delayed rice germination. Alternanthera philoxeroides and A. sessilis inhibited rice germination by 9-100% and 4-49%, respectively. Germination of rice seeds was reduced with increasing concentration of aqueous leaf extracts of both weed species. Early seedling growth (root and shoot lengths) and seedling vigor index were significantly reduced by 5% aqueous leaf extract compared with distilled water treated control. Germination, root and shoot lengths, root and shoot dry weights and seedling vigor index of rice were drastically reduced by 3 and 4% in residue infested soil compared with residue free soil. The inhibitory effect of A. philoxeroides in terms of germination and seedling growth of rice was greater than that of A. sessilis. Five percent aqueous leaf extract and 4% residue infested soil of A. philoxeroides caused complete failure of rice seed germination. Alternanthera philoxeroides contained water soluble phenolics, namely 4 hydroxy-3-methoxy benzoic acid (16.19 mg L-1) and m-coumaric acid (1.48 mg L-1), whereas Alternanthera sessilis was rich in chlorogenic acid (17.85 mg L-1), gallic acid (11.03 mg L-1) and vanillic acid (9.88 mg L-1). The study indicates that the allelopathic potential of Alternanthera species may play an important role in enhancing the invasiveness of these species and may suppress rice plants in the vicinity.
Resumo:
Sorghum, pearl millet, and Brachiaria ruziziensis have similar characteristics which have led to their use for mulch formation in no-till systems. This study was carried out to evaluate the potential of these three species as straw suppliers to suppress weed emergence. Initial findings led to the conclusion that both pearl millet and Brachiaria ruziziensis have similar or superior potential as weed suppressors, compared to sorghum straw, a species with recognized allelopathic potential. Subsequently, new trials were conducted under greenhouse conditions by sowing weed species in pots, followed by covering of the soil with the straw under evaluation. Independent experiments were conducted for Euphorbia heterophylla and Bidens pilosa. In each experiment, the factors analyzed were type of straw (pearl millet and B. ruziziensis), amount of straw (equivalent to 4 and 8 t ha-1 dry mass) and irrigation method (surface and subsurface). Both pearl millet and B. ruziziensis have shown to be species that can be cultivated to produce straw with allelopathic potential. These effects were effective in suppressing the emergence or early growth of E. heterophylla and B. pilosa. There was no difference in the suppression of emergence of these species when the soil cover level was alternated between 4 and 8 t ha-1 dry mass.
Resumo:
The weed Borreria densiflora is a management issue in soybean and sugarcane crops from North and Northeastern Brazil. Knowledge upon chemical control of B. densiflora contributes to the integrated management of this weed species, especially when active ingredient options become reduced due to the selection of herbicide resistant or tolerant weed species. Experiments in pre- and post-emergence of B. densiflora were conducted in greenhouse, in a randomized block design and four replications. In pre-emergence, the dose-response curve methodology was used and 7 herbicides were tested. In post-emergence, 9 herbicides at the recommended rate and 4 herbicide mixtures were tested. For pre and post-emergence conditions, evaluations were conducted at 60 and 21 days after treatment (DAT), respectively, and the variables analyzed were weed control and dry weight (%). The results showed options of pre-emergent herbicides that can be used for controlling B. densiflora, especially in sugarcane, where chemical weed control is mainly based on pre-emergent applications. In the current glyphosate resistance scenario, one should consider the use of pre-emergent herbicides within an integrated management of B. densiflora. For satisfactory post-emergence control, B. densiflora plants should be sprayed at the phenological stage of up to three pairs of leaves. Herbicide mixtures have been and will continue to be an important tool in chemical weed management, broadening the spectrum of weed control, while diversifying herbicide mechanisms of action, which helps to prevent or delay the appearance of herbicide resistance.