973 resultados para Seed dressing
Resumo:
The antioxidant and tyrosinase inhibitory properties of extracts of mango seed kernel (Mangifera indica L.), which is normally discarded when the fruit is processed, were studied. Extracts contained phenolic components by a high antioxidant activity, which was assessed in homogeneous solution by the 2,2-diphenyt-1-picrylhydrazyl radical and 2,2'-azinobis (3-ethylbenzothialozinesulfonic acid) radical cation-scavenging assays and in an emulsion with the ferric thiocyanate test. The extracts also possessed tyrosinase inhibitory activity. Drying conditions and extraction solvent were varied, and optimum conditions for preparation of mango seed kernel extract were found to be sun-drying with ethanol extraction at room temperature. Refluxing in acidified ethanol gave an increase in yield and the obtained extract had the highest content of total phenolics, and also was the most effective antioxidant with the highest radical-scavenging, metal-chelating and tyrosinase inhibitory activity. The extracts did not cause acute irritation of rabbit skins. Our study for the first time reveals the high total phenol content, radical-scavenging, metal-chelating and tyrosinase inhibitory activities of the extract from mango seed kernel. This extract may be suitable for use in food, cosmetic, nutraceutical and pharmaceutical applications. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
1. Reductions in resource availability, associated with land-use change and agricultural intensification in the UK and Europe, have been linked with the widespread decline of many farmland bird species over recent decades. However, the underlying ecological processes which link resource availability and population trends are poorly understood. 2. We construct a spatial depletion model to investigate the relationship between the population persistence of granivorous birds within the agricultural landscape and the temporal dynamics of stubble field availability, an important source of winter food for many of those species. 3. The model is capable of accurately predicting the distribution of a given number of finches and buntings amongst patches of different stubble types in an agricultural landscape over the course of a winter and assessing the relative value of different landscapes in terms of resource availability. 4. Sensitivity analyses showed that the model is relatively robust to estimates of energetic requirements, search efficiency and handling time but that daily seed survival estimates have a strong influence on model fit. Understanding resource dynamics in agricultural landscapes is highlighted as a key area for further research. 5. There was a positive relationship between the predicted number of bird days supported by a landscape over-winter and the breeding population trend for yellowhammer Emberiza citrinella, a species for which survival has been identified as the primary driver of population dynamics, but not for linnet Carduelis cannabina, a species for which productivity has been identified as the primary driver of population dynamics. 6. Synthesis and applications. We believe this model can be used to guide the effective delivery of over-winter food resources under agri-environment schemes and to assess the impacts on granivorous birds of changing resource availability associated with novel changes in land use. This could be very important in the future as farming adapts to an increasingly dynamic trading environment, in which demands for increased agricultural production must be reconciled with objectives for environmental protection, including biodiversity conservation.
Resumo:
This article provides a brief critique of a recent article on biomineralisation and preservation. It gives a summary of the difference between biomineralisation and mineral replacement, and addresses problems with the interpretation of FT-IR data. The lack of contextual information for the samples studied is another problem which is highlighted.
Resumo:
Experiments are presented which show that Botrytis cinerea, the cause of gray mould disease, is often present in symptomless lettuce plants as a systemic, endophytic, infection which may arise from seed. The fungus was isolated on selective media from surface sterilized sections of roots, stem pieces and leaf discs from symptomless plants grown in a conventional glasshouse and in a spore-free air-flow provided by an isolation propagator. The presence of B. cinerea was confirmed by immuno-labelling the tissues with the Botrytis-specific monoclonal antibody BC-12.CA4. As plants grew, infection spread from the roots to stems and leaves. Surface sterilization of seeds reduced the number of infected symptomless plants. Artificial infection of seedlings with dry conidia increased the rate of infection in some experiments. Selected isolates were genetically finger-printed using microsatellite loci. This confirmed systemic spread of the inoculating isolates but showed that other isolates were also present and that single plants hosted multiple isolates. This shows that B. cinerea commonly grows in lettuce plants as an endophyte, as has already been shown for Primula. If true for other hosts, the endophytic phase may be as important a component of the species population as the aggressive necrotrophic phase.
Resumo:
The potential longevity of japonica rice (Oryza sativa L. subsp. japonica) seed is particularly sensitive to high temperature – and thus climate change – during development and maturation. Cultivar Taipei 309 was grown at 28/208C (12 h/12 h) and then from 19 DAA (days after 50% anthesis), when seeds were just over half filled, at 28/208C, 30/228C, 32/248C or 34/268C (12 h/12 h). Whereas ability to germinate ex planta had been achieved in almost all seeds by 24 DAA, only half the population were desiccation tolerant. Desiccation tolerance continued to increase over the subsequent 28 d, similarly at all four temperatures. Subsequent longevity, assessed by p50 (period in days to reduce viability to 50% in hermetic storage at 408C with c. 15% moisture content), increased progressively at 28/208C until 38 DAA, and remained constant until the final harvest (52 DAA). The three warmer temperature regimes provided similar longevity to 28/208C at any one harvest, except at 38 DAA where the warmest (34/268C) was poorer. That temperature regime also provided greater seed-to-seed variability within each survival curve. The results confirm that appreciable improvement in seed quality occurs during seed development and also subsequent maturation in japonica rice, but that increase in temperature from 28/208C to 34/268C during late seed filling onwards has comparatively little effect thereon. Comparison with previous investigations suggests that seed quality development may be less sensitive to high temperatures during late development and maturation than during the early seed development that precedes it.
Resumo:
The indolines and thionins are basic, amphiphilic and cysteine-rich proteins found in cereals; puroindoline-a (Pin-a) and β-purothionin (β-Pth) are members of these families in wheat (Triticum aestivum). Pin-a and β-Pth have been suggested to play a significant role in seed defence against microbial pathogens, making the interaction of these proteins with model bacterial membranes an area of potential interest. We have examined the binding of these proteins to lipid monolayers composed of 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG) using a combination of neutron reflectometry, Brewster angle microscopy, and infrared spectroscopy. Results showed that both Pin-a and β-Pth interact strongly with condensed phase DPPG monolayers, but the degree of penetration was different. β-Pth was shown to penetrate the lipid acyl chain region of the monolayer and remove lipids from the air/liquid interface during the adsorption process, suggesting this protein may be able to both form membrane spanning ion channels and remove membrane phospholipids in its lytic activity. Conversely, Pin-a was shown to interact mainly with the head-group region of the condensed phase DPPG monolayer and form a 33 Å thick layer below the lipid film. The differences between the interfacial structures formed by these two proteins may be related to the differing composition of the Pin-a and β-Pth hydrophobic regions.
Resumo:
Local Agenda 21 seeks the meaningful involvement of a wide range of local groups and stakeholders in the formulation and implementation of public policy and a free flow of communication and discussion between them and their respective local authorities (and other areas and levels of decision-making). This paper explores the reality of this process using case study evidence from local planning practice in Liverpool (in the north of England) and Reading (in the south of the country). It concentrates on the interaction between LA21 groups and local planning authorities around the preparation of local land use plans and other policy initiatives and the day-to-day regulation of development permits. The paper builds on ‘New Institutionalist’ theory to explore the constraints and opportunities for significant transformations in social, political and economic ‘structures’ or ‘ways of doing things’ through the LA21 process. It concludes that the two cases provide evidence of mixed success in achieving such changes in established planning practices.
Resumo:
Pods play a key role in encapsulating the developing seeds and protecting them from pests and pathogens. In addition to this protective function, it has been shown that the photosynthetically active pod wall contributes assimilates and nutrients to fuel seed growth. Recent work has revealed that signals originating from the pod may also act to coordinate grain filling and regulate the reallocation of reserves from damaged seeds to those that have retained viability. In this review we consider the evidence that pods can regulate seed growth and maturation, particularly in members of the Brassicaceae family, and explore how the timing and duration of pod development might be manipulated to enhance either the quantity of crop yield or its nutritional properties.
Resumo:
In vitro batch culture fermentations were conducted with grape seed polyphenols and human faecal microbiota, in order to monitor both changes in precursor flavan-3-ols and the formation of microbial-derived metabolites. By the application of UPLC-DAD-ESI-TQ MS, monomers, and dimeric and trimeric procyanidins were shown to be degraded during the first 10 h of fermentation, with notable inter-individual differences being observed between fermentations. This period (10 h) also coincided with the maximum formation of intermediate metabolites, such as 5-(3′,4′-dihydroxyphenyl)-γ-valerolactone and 4-hydroxy-5-(3′,4′-dihydroxyphenyl)-valeric acid, and of several phenolic acids, including 3-(3,4-dihydroxyphenyl)-propionic acid, 3,4-dihydroxyphenylacetic acid, 4-hydroxymandelic acid, and gallic acid (5–10 h maximum formation). Later phases of the incubations (10–48 h) were characterised by the appearance of mono- and non-hydroxylated forms of previous metabolites by dehydroxylation reactions. Of particular interest was the detection of γ-valerolactone, which was seen for the first time as a metabolite from the microbial catabolism of flavan-3-ols. Changes registered during fermentation were finally summarised by a principal component analysis (PCA). Results revealed that 5-(3′,4′-dihydroxyphenyl)-γ-valerolactone was a key metabolite in explaining inter-individual differences and delineating the rate and extent of the microbial catabolism of flavan-3-ols, which could finally affect absorption and bioactivity of these compounds.
Resumo:
Hybrid vigour may help overcome the negative effects of climate change in rice. A popular rice hybrid (IR75217H), a heat-tolerant check (N22), and a mega-variety (IR64) were tested for tolerance of seed-set and grain quality to high-temperature stress at anthesis at ambient and elevated [CO2]. Under an ambient air temperature of 29 °C (tissue temperature 28.3 °C), elevated [CO2] increased vegetative and reproductive growth, including seed yield in all three genotypes. Seed-set was reduced by high temperature in all three genotypes, with the hybrid and IR64 equally affected and twice as sensitive as the tolerant cultivar N22. No interaction occurred between temperature and [CO2] for seed-set. The hybrid had significantly more anthesed spikelets at all temperatures than IR64 and at 29 °C this resulted in a large yield advantage. At 35 °C (tissue temperature 32.9 °C) the hybrid had a higher seed yield than IR64 due to the higher spikelet number, but at 38 °C (tissue temperature 34–35 °C) there was no yield advantage. Grain gel consistency in the hybrid and IR64 was reduced by high temperatures only at elevated [CO2], while the percentage of broken grains increased from 10% at 29 °C to 35% at 38 °C in the hybrid. It is concluded that seed-set of hybrids is susceptible to short episodes of high temperature during anthesis, but that at intermediate tissue temperatures of 32.9 °C higher spikelet number (yield potential) of the hybrid can compensate to some extent. If the heat tolerance from N22 or other tolerant donors could be transferred into hybrids, yield could be maintained under the higher temperatures predicted with climate change.
Resumo:
Striga hermonthica and Striga asiatica are obligate root parasites that cause serious problems in the production of staple cereal crops in Africa. Because of the high levels of infestation, there is an urgent need to control these weeds. A potentially useful control option is depletion of the soil seed bank by suicidal germination, which involves germination of the seeds in the absence of host plants. Suicidal germination is often mentioned in the literature, but not considered realistic, because of the alleged untimely decomposition of the stimulants in the soil, despite the fact that some encouraging results were reported around 1980. The alleged instability has prevented active research in this direction for the past 20–25 years. Five newly designed synthetic germination stimulants were investigated as candidates for suicidal germination. An important issue is the persistence of these stimulants in soil. Packets with Striga spp. seeds were put in pots with soil and then treated with aqueous solutions of the stimulants. All five compounds induced germination under these conditions, with percentages varying between 18% and 98% depending on stimulant and species. There were no noticeable signs of decomposition of the stimulants. The best performing stimulant is derived from 1-tetralone. We conclude that synthetic strigolactones analogues have excellent prospects for use in combating parasitic weeds. Further testing will be needed to evaluate whether such prospects can be realised in the field.
Resumo:
Species-rich lowland hay meadows are of conservation importance for both plants and invertebrates; however, they have declined in area across Europe as a result of conversion to other land uses and management intensification. The re-creation of these grasslands on ex-arable land provides a valuable approach to increasing the extent and conservation value of this threatened habitat. Over a 3-year period a replicated block design was used to test whether introducing seeds promoted the re-creation of both plant and phytophagous beetle assemblages typical of a target hay meadow. Seeds were harvested from local hay meadows, and applied to experimental plots in the form of either green hay or brush harvesting seeds. Green hay spreading achieved the greatest success in re-creating plant and phytophagous beetle assemblages. While re-creation success increased over time for both taxa, for the phytophagous beetles the greatest increase in re-creation success relative to the establishment year also occurred where green hay was applied. We also considered the phytophagous beetles in terms of functional traits that describe host plant specificity, larval feeding location and dispersal. Phytophagous beetle functional trait composition was most similar to the target hay meadow assemblage where some form of seed addition was used, i.e. hay spreading or brush harvested seeds. This study identified the importance of introducing target plant species as a mechanism to promote the re-creation of phytophagous beetle communities. Seed addition methods (e.g. green hay spreading) are crucial to successful hay meadow re-creation.
Resumo:
With the aim of investigating the potential of flavan-3-ols to influence the growth of intestinal bacterial groups, we have carried out the in vitro fermentation, with human faecal microbiota, of two purified fractions from grape seed extract (GSE): GSE-M (70% monomers and 28% procyanidins) and GSE-O (21% monomers and 78 % procyanidins). Samples were collected at 0, 5, 10, 24, 30 and 48 h of fermentation for bacterial enumeration by fluorescent in situ hybridization and for analysis of phenolic metabolites. Both GSE-M and GSE-O fractions promoted growth of Lactobacillus/Enterococcus and decrease in the Clostridium histolyticum group during fermentation, although the effects were only statistically significant with GSE-M for Lactobacillus/Enterococcus (at 5 and 10 h of fermentation) and GSE-O for C. histolyticum (at 10 h of fermentation). Main changes in polyphenol catabolism also occurred during the first 10 h of fermentation, however no significant correlation coefficients (P>0.05) were found between changes in microbial populations and precursor flavan-3-ols or microbial metabolites. Together these data suggest that the flavan-3-ol profile of a particular food source could affect the microbiota composition and its catabolic activity, inducing changes that could in turn affect the bioavailability and potential bioactivity of these compounds.
Resumo:
Background and Aims: Seeds of the moist temperate woodland species Galanthus nivalis and Narcissus pseudonarcissus, dispersed during spring or early summer, germinated poorly in laboratory tests. Seed development and maturation were studied to better understand the progression from developmental to germinable mode in order to improve seed collection and germination practices in these and similar species. Methods: Phenology, seed mass, moisture content, and ability to germinate and tolerate desiccation were monitored during seed development until shedding. Embryo elongation within seeds was investigated during seed development and at several temperature regimes after shedding. Key Results: Seeds were shed at high moisture content (> 59%) with little evidence that dry mass accumulation or embryo elongation were complete. Ability to germinate developed prior to the ability of some seeds to tolerate enforced desiccation. Germination was sporadic and slow. Embryo elongation occurred post-shedding in moist environments, most rapidly at 20C in G. nivalis and 15C in N. pseudonarcissus. The greatest germination also occurred in these regimes, 78 and 48%, respectively, after 700 d. Conclusions: Seeds of G. nivalis and N. pseudonarcissus seeds were comparatively immature at shedding and substantial embryo elongation occurred post-shedding. Seeds showed limited desiccation tolerance at dispersal.