949 resultados para Secretory ducts
Resumo:
Effects of various combinations of photoperiod and temperature (NL-NT, LD 15:9-28°C, NL-28°C and LD 15:9 NT) were studied on testicular activity and pituitary gonadotropic cells in Channa punctatus during resting phase of reproductive cycle. Long photoperiod (LD 15:9-28°C) and warm temperature (NL-28°C) regimes were found to be more effective for testicular maturation and secretory activity of gonadotropic cells suggesting testicular maturation via brain-pituitary-testicular axis.
Resumo:
Annual cycle of gonad development and spawning in pearl oyster, Pinctada ficata (Gould) in Nakhiloo, Northeast Persian Gulf, was investigated over two years from August 1994 to June 1996. Gonadal condition was assessed by staging criteria to describe gametogenic development from histological preparations of randomly collected individuals of all sizes. A bimodal gametogenic pattern with summer and autumn spawning periods was evident throughout the study. Gametogensis commenced in November-December which proceeded by major gonadal maturation during February-April. Summer spawning was observed from April to July with major spawning at the latter end. During spawning peak in July, low level of gametogensis was noticed. Gametogenic activity was picked up again in August-September which proceeded by autumn spawning from September to December. Towards the end of spawning season, incidence of gonadal inactivation increased. Minimum level of gonadal activity was observed in November. Temperature regime appears to have influential role in regulation of gametogenic and spawning processes. Gonadal development and spawning trends were similar in both sexes. P. radiaata was found to be protandrous hermaphrodite which matured as a male at shell height greater than 20 mm. Biseivality was uncommon and the sex ratio was about 1:1. Ultrastructure of gametes were investigated in the Pictada fucata (Gould). "Auxiliary cells" closely accociated with developing oocytes were observed. Each oocyte seems to be associated with only one secretory cell. which is characterized by an abundant rough endoplasmic reticulum at the onset of vitellogenesis. Contact between this cell and a developing oocytes is maintained by a desmosome-like junction which can be observed when the vitelline coat is formed. these "auxiliary or nursing cells" seem to play a tropic role in vitellogenesis, and may be involved in the formation of the vitelline coat of the oocytes. Oocytic degeneration is observed in this species, it is a continuous phenomenon of varing intensity throughout the year. The ultrastructural changes resulting in lysis of the oocyte are described. Mature spermatozoa consist of a broad, cap-shaped acrosomal vesicle, subacrosomal material, a round nucleus, two triplet substructure centrioles surrounded by four spherical mitochondria, and a flagellum anchored to the distal centriole and plasma membrane. Spermatozoa of Plucata closley resemble to those of other investigated Pteriidae. Changes in proximate composition of soft tissue and gonadal cycle of Pinctada fucata was studied. Mobilization and utilization of stored reserves are apparent during gametogenesis and gonadal maturation. Protein reserves are utilized during spermatogenesis while reserved carbohydrates form the main energy donor in oogenesis. The role of lipid as am.: energy reserve is second to that of carbohydrate.
Resumo:
An experimental and numerical investigation into transonic shock/boundary-layer interactions in rectangular ducts has been performed. Experiments have shown that flow development in the corners of transonic shock/boundary-layer interactions in confined channels can have a significant impact on the entire flowfield. As shock strength is increased from M∞ = 1:3 to 1.5, the flowfield becomes very slightly asymmetrical. The interaction of corner flows with one another is thought to be a potential cause of this asymmetry. Thus, factors that govern the size of corner interactions (such as interaction strength) and their proximity to one another (such as tunnel aspect ratio) can affect flow symmetry. The results of the computational study show reasonable agreement with experiments, although simulations with particular turbulence models predict highly asymmetrical solutions for flows that were predominantly symmetrical in experiments. These discrepancies are attributed to the tendency of numerical schemes to overprediction corner-interaction size, and this also accounts for why computational fluid dynamics predicts the onset of asymmetry at lower shock strengths than in experiments. The findings of this study highlight the importance of making informed decisions about imposing artificial constraints on symmetry and boundary conditions for internal transonic flows. Future effort into modeling corner flows accurately is required. Copyright © 2011 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
Testosterone undecanoate (TU) is under phase III clinical trial as a hormonal male contraceptive in China. Sex hormones can modulate the immune system. Female hormonal contraceptives may affect SIV/HIV-1 transmission. To evaluate the safety of TU and to understand whether long-term use of TU for a male contraceptive affects users' immunological features, adult male rats were treated for a 32-week TU-treated phase at the dose of 20 mg TU/kg body weight and a 24-week recovery phase. The reproductive and immunological parameters of 4-6 rats in each subgroup were examined at the stated time point. The mean sperm count and viability in the treated rats were significantly suppressed (p < 0.01). In the TU-treated group: the mean blood leukocyte and lymphocyte counts; the proliferation indexes of T cells from peripheral blood mononuclear cells (PBMC) and spleen; and, of B cells from spleen, as well as the mean counts of blood T, NK, and B cells decreased in comparison with those of control group. These decreases were not significant (p > 0.01). Similarly, the mean serum IgM, IgG, and IgA levels and complement activity in TU-treated rats were lower than those in control group (p > 0.01), and the changes in the antibody levels of the examined genital secretions were not significant (p > 0.01). The changes in the thickness of urethra epithelium, and in secretory component (SC) expression in genitals were not observed in the treated group. These results demonstrated that long-term supraphysiological TU injection did not obviously affect the examined rat immunological parameters.
Resumo:
Live attenuated vaccines are of great value for preventing infectious diseases. They represent a delicate compromise between sufficient colonization-mediated adaptive immunity and minimizing the risk for infection by the vaccine strain itself. Immune defects can predispose to vaccine strain infections. It has remained unclear whether vaccine safety could be improved via mutations attenuating a vaccine in immune-deficient individuals without compromising the vaccine's performance in the normal host. We have addressed this hypothesis using a mouse model for Salmonella diarrhea and a live attenuated Salmonella Typhimurium strain (ssaV). Vaccination with this strain elicited protective immunity in wild type mice, but a fatal systemic infection in immune-deficient cybb-/-nos2-/- animals lacking NADPH oxidase and inducible NO synthase. In cybb-/-nos2-/- mice, we analyzed the attenuation of 35 ssaV strains carrying one additional mutation each. One strain, Z234 (ssaV SL1344_3093), was >1000-fold attenuated in cybb-/-nos2-/- mice and ≈100 fold attenuated in tnfr1-/- animals. However, in wt mice, Z234 was as efficient as ssaV with respect to host colonization and the elicitation of a protective, O-antigen specific mucosal secretory IgA (sIgA) response. These data suggest that it is possible to engineer live attenuated vaccines which are specifically attenuated in immuno-compromised hosts. This might help to improve vaccine safety. © 2012 Periaswamy et al.
Resumo:
Intracellular replication within specialized vacuoles and cell-to-cell spread in the tissue are essential for the virulence of Salmonella enterica. By observing infection dynamics at the single-cell level in vivo, we have discovered that the Salmonella pathogenicity island 2 (SPI-2) type 3 secretory system (T3SS) is dispensable for growth to high intracellular densities. This challenges the concept that intracellular replication absolutely requires proteins delivered by SPI-2 T3SS, which has been derived largely by inference from in vitro cell experiments and from unrefined measurement of net growth in mouse organs. Furthermore, we infer from our data that the SPI-2 T3SS mediates exit from infected cells, with consequent formation of new infection foci resulting in bacterial spread in the tissues. This suggests a new role for SPI-2 in vivo as a mediator of bacterial spread in the body. In addition, we demonstrate that very similar net growth rates of attenuated salmonellae in organs can be derived from very different underlying intracellular growth dynamics.
Resumo:
Emissions, fuel burn, and noise are the main drivers for innovative aircraft design. Embedded propulsion systems, such as for example used in hybrid-wing body aircraft, can offer fuel burn and noise reduction benefits but the impact of inlet flow distortion on the generation and propagation of turbomachinery noise has yet to be assessed. A novel approach is used to quantify the effects of non-uniform flow on the creation and propagation of multiple pure tone (MPT) noise. The ultimate goal is to conduct a parametric study of S-duct inlets to quantify the effects of inlet design parameters on the acoustic signature. The key challenge is that the effects of distortion transfer, noise source generation and propagation through the non-uniform flow field are inherently coupled such that a simultaneous computation of the aerodynamics and acoustics is required to capture the mechanisms at play. The technical approach is based on a body force description of the fan blade row that is able to capture the distortion transfer and the blade-to-blade flow variations that cause the MPT noise while reducing computational cost. A single, 3-D full-wheel CFD simulation, in which the Euler equations are solved to second-order spatial and temporal accuracy, simultaneously computes the MPT noise generation and its propagation in distorted inlet flow. A new method of producing the blade-to-blade variations in the body force field for MPT noise generation has been developed and validated. The numerical dissipation inherent to the solver is quantified and used to correct for non-physical attenuation in the far-field noise spectra. Source generation, acoustic propagation and acoustic energy transfer between modes is examined in detail. The new method is validated on NASA's Source Diagnostic Test fan and inlet, showing good agreement with experimental data for aerodynamic performance, acoustic source generation, and far-field noise spectra. The next steps involve the assessment of MPT noise in serpentine inlet ducts and the development of a reduced order formulation suitable for incorporation into NASA's ANOPP framework. © 2010 by Jeff Defoe, Alex Narkaj & Zoltan Spakovszky.
Resumo:
Flows throughout different zones of turbines have been investigated using large eddy simulation (LES) and hybrid Reynolds-averaged Navier–Stokes-LES (RANS-LES) methods and contrasted with RANS modeling, which is more typically used in the design environment. The studied cases include low and high-pressure turbine cascades, real surface roughness effects, internal cooling ducts, trailing edge cut-backs, and labyrinth and rim seals. Evidence is presented that shows that LES and hybrid RANS-LES produces higher quality data than RANS/URANS for a wide range of flows. The higher level of physics that is resolved allows for greater flow physics insight, which is valuable for improving designs and refining lower order models. Turbine zones are categorized by flow type to assist in choosing the appropriate eddy resolving method and to estimate the computational cost.
Resumo:
The adoption of lean premixed prevaporised combustion systems can reduce NOx emissions from gas turbines, but unfortunately also increases their susceptibility to thermoacoustic instabilities. Initially, acoustic waves can produce heat release fluctuations by a variety of mechanisms, often by perturbing the equivalence ratio. If correctly phased, heat release fluctuations can subsequently generate more acoustic waves, which at high amplitude can result in significant structural damage to the combustor. The prediction of this phenomenon is of great industrial interest. In previous work, we have coupled a physics based, kinematic model of the flame with a network model to provide the planar acoustic response necessary to close the feedback loop and predict the onset and amplitude of thermoacoustic instabilities in a lab-scale, axisymmetric single burner combustor. The advantage of a time domain approach is that the modal interaction, the influence of harmonics, and flame saturation can be investigated. This paper extends this approach to more realistic, annular geometries, where both planar and circumferential modes must be considered. In lean premixed prevaporised combustors, fluctuations in equivalence ratio have been shown to be a dominant cause of unsteady combustion. These can occur, for example, due to velocity perturbations in the premix ducts, which can lead to equivalence ratio fluctuations at the fuel injectors, which are subsequently convected downstream to the flame surfaces. Here, they can perturb the heat release by locally altering the flame speed, enthalpy of combustion, and, indirectly, the flame surface area. In many gas turbine designs, particularly aeroengines, the geometries are composed of a ring of premix ducts linking a plenum and an annular combustor. The most unstable modes are often circumferential modes. The network model is used to characterise the flow response of the geometry to heat fluctuations at an appropriate location, such as the fuel injectors. The heat release at each flame holder is determined in the time domain using the kinematic flame model derived, as a function of the flow perturbations in the premix duct. This approach is demonstrated for an annular ring of burners on a in a simple geometry. The approach is then extended to an industrial type gas turbine combustor, and used to predict the limit cycle amplitudes. Copyright © 2012 by ASME.
Resumo:
A design methodology is presented for turbines in an annulus with high end wall angles. Such stages occur where large radial offsets between the stage inlet and stage outlet are required, for example in the first stage of modern low pressure turbines, and are becoming more prevalent as bypass ratios increase. The turbine vanes operate within s-shaped ducts which result in meridional curvature being of a similar magnitude to the bladeto-blade curvature. Through a systematic series of idealized computational cases, the importance of two aspects of vane design are shown. First, the region of peak end wall meridional curvature is best located within the vane row. Second, the vane should be leant so as to minimize spanwise variations in surface pressure-this condition is termed "ideal lean." This design philosophy is applied to the first stage of a low pressure turbine with high end wall angles. © 2014 by ASME.
Resumo:
Anterior gradient 2 (Agr2) genes encode secretory proteins, and play significant roles in anterior-posterior patterning and tumor metastasis. Agr2 transcripts were shown to display quite diverse tissue distribution in different species, and little was known about the cellular localization of Agr2 proteins. In this study, we identified an Agr2 homologue from gibe[ carp (Carassius auratus gibelio), and revealed the expression patterns and cellular localization during embryogenesis and in adult tissues. The full-length cDNA of CagAgr2 is 803 nucleotides (nt) with an open reading frame of 510 nt encoding 169 amino acids. The Agr2 C-terminus matches to the class I PDZ-interacting motif, suggesting that it might be a PDZ-binding protein. During embryogenesis, CagAgr2 was found to be transcribed in the mucus-secreting hatching gland from tailbud stage and later in the pharynx region, swim bladder and pronephric duct as revealed by RT-PCR and whole mount in situ hybridization. In the adult fish, its transcription was predominantly confined to the kidney, and lower transcription levels were also found in the intestine, ovary and gills. To further localize the Agr2 protein, the anti-CagAgr2 polyclonal antibody was produced and used for immunofluorescence observation. In agreement with mRNA expression data, the Agr2 protein was localized in the pronephric duct of 3dph larvae. In adult fish, Agr2 protein expression is confined to the renal collecting system with asymmetric distribution along the apical-basolateral axis. The data provided suggestive evidence that fish Agr2 might be involved in differentiation and secretory functions of kidney epithelium. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Midkine (Mdk) genes have been revealed to have different expression patterns in vertebrates and therefore, additional studies on Mdk expression patterns are required in more species. In this study, CagMdkb has been cloned and characterized from a SMART cDNA library of 10-somite stage embryos of Carassius auratus gibelio. Its full length cDNA is 1091 bp and encodes a sequence of 147 amino acids, which shows 97.3% identity to zebrafish Mdkb on the amino acid level. RT-PCR analysis reveals that CagMdkb is first transcribed in gastrula embryos and maintains a relatively stable expression level during subsequent embryogenesis. Western blot analysis reveals a 19 kDa maternal CagMdkb protein band and the zygotic CagMdkb protein is expressed from gastrula stage. At around 10 somite stage, the 19 kDa CagMdkb is processed to another protein band of about 17 kDa, which might be the secreted form with the 21-residue signal peptide removed. With immunofluorescence analysis, maternal CagMdkb protein was found to be localized in each blastamere cell of early embryos. The zygotic CagMdkb positive fluorescence signal was detected from a pair of large neurons at 18-somite stage. At the later stages, CagMdkb protein was also extended to numerous small neurons in the forebrain, midbrain and hindbrain, as well as to nerve fibers in the spinal cord. Co-localization with 3A10 antibody revealed CagMdkb immunoreactivity on developing Mauthner neurons, a member of reticulospinal neurons. In addition, ectopic expression of CagMdkb in early embryos of gibel carp and zebrafish suppressed head formation and CagMdkb function was found to depend on secretory activity. All these findings indicate that CagMdkb plays an important role in neural development during gibel carp embryogenesis and there is functional conservation of Mdkb in fish head formation.
Resumo:
Seven species of the marine enchytraeid genus Grania Southern, 1913 are described from sediments sampled during the 2003 International Workshop on the Marine Flora and Fauna of Esperance Bay and the Recherche Archipelago, on the southern coast of Western Australia. Two species are new to science, the euryhaline Tasmanian G. dolichura Rota and Erseus, 2000 represents a new record for the state, and the remaining four species were known from other parts of Western Australia. Grania quaerens sp. n. is recognized by having a high chaetal index (= 5 short chaetal foot), small coelomocytes, penial apparati with long whip-like terminal stylets, conspicuous spermathecae with ectally bulbous ducts, and ectally granulated ampullae housing sperm rings in their ental region. Grania sperantia sp. n. is readily distinguishable by the complete lack of lateral chaetae, a multiple-banded pattern of the clitellum, extremely long sperm funnels, and the intrasegmental location of the spermathecal pores. The latter new species and four others in the collection (G. bykane Coates, 1990, G. crassiducta Coates, 1990, G. dolichura, and G. ersei Coates, 1990) are remarkable in possessing the head organ, a sensory structure unique to Grania that was not noted previously in Western Australian species. When considering the whole genus, the geographic pattern of the head organ appears southern-centred: of the 17 species of Grania reported to possess it, as many as 13 inhabit the southern latitudes. The seventh species of the Esperance collection, G. vacivasa Coates and Stacey, 1993, is notable for the kind of items found in its gut and the unusual appearance of its pygidium.
Resumo:
The propagation of unsteady disturbances in a slowlyvarying cylindrical duct carrying mean swirling flow is investigated using a multiple-scales technique. This is applicable to turbomachinery flow behind a rotor stage when the swirl and axial velocities are of the same order. The presence of mean vorticity couples acoustic and vorticity equations which produces an eigenvalue problem that is not self-adjoint unlike that for irrotational mean flow. In order to determine the amplitude variation along the duct, an adjoint solution for the coupled system of equations is derived. The solution breaks down where a mode changes from cut on to cut off. In this region the amplitude is governed by a form of Airy's equation, and the effect of swirl is to introduce a small shift in the origin of the Airy function away from the turning-point location. The variation of axial wavenumber and amplitude along the duct is calculated. In hard-walled ducts mean swirl is shown to produce much larger amplitude variation along the duct compared with a nonswirling flow. Mean swirl also has a large effect in ducts with finite-impedance walls which differs depending on whether modes are co-rotating with the swirl or counter rotating. © 2001 by A.J. Cooper, Published by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
Potamothrix scleropenis sp. nov. (Tubificidae: Tubificinae) is described from the profundal zone (74 m) of Fuxian Lake, the deepest lake (up to 155 m) on the Yunnan-Guizhou Plateau in China. The new species is assigned to Potamothrix because of its short vasa deferentia. and its tubular atria without ejaculatory ducts and prostate glands. It differs from congeners by its cuticularized penis sheaths; bifurcated, strongly curved spermathecal chaetae; bifurcated lower prongs of bifids; and feathered hairs. P scleropenis appears closely related to P cekanovskajae Finogenova, 1972 and P tudoranceai porka, 1994, since all the three species have homogeneous atria without prostate glands.