942 resultados para Seasonal variations (Economics)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The first step for the application of stable isotope analyses of ice wedges for the correct paleoclimatic reconstruction supposes the study of the isotopic composition of modern ice wedges and their relationship with the isotopic composition of modern precipitation. The purpose of this research is to present, to analyze and to discuss new data on isotopic composition (d18O, dD, 3H) of modern ice wedges obtained in the Laptev Sea region in 1998-99. Investigations were carried out at two sites: on Bykovsky Peninsula in 1998 and on Bol'shoy Lyakhovsky Island in 1999 and were based on the combined application of both tritium CH) and stable isotope (d18O, dD) analyses. Tritium analyses of the atmospheric precipitation collected during two field seasons show seasonal variations: high tritium concentration in snow (to a maximum of 207 TU) and low values of tritium concentration (<20 TU) in rain. High tritium concentrations are also observed in the surface water, in suprapermafrost ground waters, and in the upper part of permafrost. High tritium concentrations range between 30-40 TU and 750 TU in the studied modern ice wedges (active ice wedges), which let us believe that they are of modern growth. Such high tritium concentrations in ice wedges can not be associated with old thermonuclear tritium because of the radioactive decay. High tritium concentrations found in the snow cover in 1998/99, in the active layer and in the upper part of permafrost give evidence of modern (probably the last decade) technogenic tritium arrival from the atmosphere on to the Earth surface in the region. The comparison of the isotopic composition (d18O, dD and d-excess) of active ice wedges and modern winter precipitation in both sites shows: 1) the isotopic composition of snow correlates linearly with a slope close to 8.0 and parallel to the GMWL at both sites; 2) the mean isotopic composition of active ice wedges on Bykovsky Peninsula is in good agreement with the mean isotopic composition of modern snow; 3) the isotopic composition of active ice wedges and snow on Bol'shoy Lyakhovsky Island are considerably different. There are low values of d-excess in all studied active ice wedges (mean value is about 4.8 per mil), while in snow, the mean value of d-excess is about 9.5 per mil. Possible reasons for this gap are the following: 1) the modification of the isotopic composition in snow during the spring period; 2) changes in the isotopic composition of ice wedges due to the process of ice sublimation in open frost cracks during the cold period; 3) mixing of snowmelt water with different types of surface water during the spring period; 4) different moisture source regions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In some gonochoristic species, sex is influenced not only by genotype at conception but also by the environment that offspring experience during early ontogeny (termed environmental sex determination or ESD). ESD is thought to be adaptive when seasonal variations in environmental conditions provide a sex-specific fitness advantage. In vertebrates, temperature is the most common determinant of sex, and seasonal variation in temperature serves as a temporal cue of environmental quality such as length of the growing season. Some environments, however, lack strong seasonal temperature fluctuations and other cues, particularly photoperiod, may provide a more reliable indicator of the environment offspring enter. We tested this hypothesis by rearing the offspring of the California grunion (Leuresthes tenuis, Ayres), which experiences low seasonal temperature variation in nature, under common garden conditions at three temperature and two photoperiod treatments. Our experiments revealed that both temperature and photoperiod significantly affected sex ratios in L. tenuis. More females were produced at cooler temperatures and longer day lengths, which is consistent with female biased sex ratios early in the breeding season, and likely adaptive through increased female size and fecundity. To our knowledge, this is the first documented case of photoperiod-dependent sex determination in a gonochoristic vertebrate.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Data on the zooplankton community structure, gut evacuation rate and carbon content of zooplankton faecal pellets were used for assessing the contribution of zooplankton to vertical carbon fluxes in the White and Kara Seas. The results revealed strong regional and seasonal variations of pellet carbon input related to differences in structure and dynamics of the zooplankton communities in the regions studied. In the deep regions of the White Sea, maximum daily pellet carbon flux from the 0-50 m layer was observed in the spring. It reached 98 mg Corg m-2 day-1 and coincided with a strong predominance of the large arctic herbivorous copepod Calanus glacialis in the surface layers. In summer and fall, it decreased by 1 to 2 orders of magnitude due to migration of this copepod to its overwintering depths. In contrast, in the shallow coastal regions, the pellet production was low in spring, gradually increased during summer and reached its maximum of 138 mg Corg m-2 day-1 by late summer to beginning of autumn. Such a seasonal pattern was in accordance with the seasonal variation of abundance of major pellet producers, the small boreal copepods Acartia bifilosa, Centropages hamatus, and Temora longicornis. In the estuarine zone of the Kara Sea, the pellet flux was mostly formed by pellets of brackish-water omnivorous copepods. It varied from 35 mg Corg m-2 day-1 in 1997 to 96 mg Corg m-2 day-1 in 1999. In the central Kara Sea with its typical marine community, the daily flux reached 125 mg Corg m-2 day-1 in summer. The results of our calculations indicate that both in the White and Kara seas zooplankton pellet carbon contributes up to 30 % to the total carbon flux during particular seasons.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The first studies of microalgae fluxes over the Lomonosov Ridge in the northern Laptev Sea were carried out with a sediment trap at the year-long mooring station LOMO-2, installed at 150 m depth from September 15, 1995 to August 16, 1996. These studies demonstrated essential seasonal variations of vertical microalgae flux. It was shown that in summer diverse flora (composed mainly of cryophylic diatoms) growed intensively beneath the permanent ice cover. Strongly pronounced seasonal variations of microalgae growth correlate closely with solar radiation. Exactly during the maximum insolation period, from the middle of July until the end of September, the microalgae flux was hundreds of times higher than that in the rest of the year. Summer values of the microalgae flux over the Lomonosov Ridge in the northern Laptev Sea were similar to those in the Weddell Sea (Antarctic) and exceeded summer flux values in the Norwegian and Greenland Seas and in the St. Anna Trough (northwestern Kara Sea).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

99Tc levels were measured in seawater samples collected between 2000 and 2002 in the West Spitsbergen Current (WSC) and along the western coast of Svalbard or Spitzbergen and compared with available oceanographic 3-D modelling results for the late 1990s. Additional data from related regions are also presented in order to support the data interpretation. The seawater in the Arctic fjord Kongsfjorden on the western coast of Svalbard is influenced by the WSC, as shown by the 99Tc levels in surface water. By means of the WSC, 99Tc reaches the Eastern Fram Strait, where one branch of the WSC turns west into the East Greenland Current (EGC), and another branch continues northwards into the Arctic Ocean. Surface seawater collected in the central part of the WSC during a cruise on board the R/V "Polarstern" in the summer of 2000, showed higher levels of 99Tc than samples measured in Kongsfjorden in the spring of 2000. However, all levels measured in surface water are of the same order of magnitude. Data from sampling of deeper water in the WSC and EGC provide information pertaining to the lateral distribution of 99Tc. In all vertical profiling surveys (conducted in spring and summer), the highest levels of 99Tc were found in surface water. Comparison with oceanographic 3-D modelling indicates both significant seasonal variations in the lateral stratification of the WSC and variations with depth over shorter vertical distances. This information can be applied in sampling strategies, environmental monitoring, long-range transport of pollutants and physical oceanography.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Planktic foraminiferal assemblages vary in response to seasonal fluctuations of hydrographic properties, between water masses, and after periodical changes and episodic events (e.g. reproduction, storms). Distinct annual variability of the planktic foraminiferal flux is also known from sediment trap data. In this paper we discuss the short-term impacts on interannual flux rates based on data from opening-closing net hauls obtained between the ocean surface and 500 m water depth. Data were recorded during April, May, June, and August at around 47°N, 20°W (BIOTRANS) in 1988, 1989, 1990, 1992, 1993, and during May 1989 and 1992 at 57°N, 20-22°W. Species assemblages closely resemble each other when comparing the mixed layer fauna with the fauna of the upper 100 m and the upper 500 m of the water column. In addition, species assemblages >100 µm are almost indistinguishable from assemblages that are >125 µm in test size. The standing stock of planktic foraminifers at BIOTRANS can vary by more than one order of magnitude over different years; however, species assemblages may be similar when comparing corresponding seasons. Early summer assemblages (June) are distinctly different from late summer assemblages (August). Significant variations in the species composition during spring (April/May) are independent of the mixed layer depth. Spring assemblages are characterized by high numbers of Globigerinita glutinata. In particular, day-to-day variations of the number of specimens and in species composition may have the same order of magnitude as interannual variations. This appears to be independent of the reproduction cycle. Species assemblages at 47°N and 57°N are similar during spring, although surface water temperatures and salinities differ by up to 10°C and 0.7 (PSU). We suggest that the main factors controlling the planktic foraminiferal fauna are the trophic properties in the upper ocean productive layer. Planktic foraminiferal carbonate flux as calculated from assemblages reveals large seasonal variations, a quasi-annual periodicity in flux levels, and substantial differences in timing and magnitude of peak fluxes. At the BIOTRANS station, the average annual planktic foraminiferal CaCO3 fluxes at 100 and 500 m depth are estimated to be 22.4 and 10.0 g/m**2/yr, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Results of multiyear investigation of distribution and composition of suspended matter in waters off the northwest coast of Africa are presented. Large-scale circulation, upwelling, river runoff, and aeolian deposition affect distribution and evolution of biochemical composition of particulate matter. Concentrations of organic carbon, nitrogen, chlorophyll, phytoplankton and trace metals in the particulate matter are determined. Ratios of these components exhibit seasonal variations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based on observations during four scientific expeditions to the Kara Sea and the Siberian rivers Ob and Yenisei we determined the discharge, distribution and characteristics of dissolved organic matter (DOM). Surface concentrations of dissolved organic carbon (DOC) ranged from 151 IlM C in the northern Kara Sea to 939 IlM C in the river Ob. The estimated annual mean DOC concentration in the Yenisei (681 IlM C) was slightly higher than in the Ob (640 IlM C). Dissolved organic nitrogen (DON) concentrations typically varied between 5 and 15 IlM N with higher values in the rivers. Freshwater discharge and DOC concentrations experienced pronounced seasonal variations strongly affecting the spatial and temporal distribution of DOM in the Kara Sea. The largely conservative distribution of DOC and DON along the salinity gradient indicated the predominantly refractory character of riverine DOM. This observation was consistent with laboratory experiments, which showed only minor losses due to flocculation processes and bacterial consumption. Optical properties and relatively high C/N ratios (19 to 51) of DO M suggest that a large fraction of river DOM is of terrestrial origin and that phytoplankton contributed little to DOM on the Kara Sea shelf during the sampling periods. Together, the rivers Ob and Yenisei discharge about 8 Tg DOC yr- I into the Kara Sea. Due to the absence of efficient removal mechanisms in these estuaries the majority of riverine DOM appears to pass the estuarine mixing zone and is transported towards the Arctic Ocean.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Seasonal distributions of ostracode species from the Bay of Kiel, western Baltic Sea (Bokniseck, 'Hausgarten') were studied at seven observation stations located between 6 - 23.5 m water depth. During the period from December 1973 to March 1975, 175 samples were taken every two weeks from the sediment surface at each station. Environmental factors were measured simultaneously with sampling. Most of the ostracode species were present in all of the samples throughout the year; four species were found to be seasonal. On the other hand, the population densities of each of the examined ostracode species, as revealed by countings, indicate marked seasonal variations. These variations are attributed to changes in length rate and timing of the reproductive cycles of the different ostracode species, effected mainly by food supply. Maxima in the abundance of the ostracode species with short (1/2 - 1 month) life cycles, occurred simultaneously with peaks of food supply in spring and autumn, whereas the maxima abundance of ostracodes with longer (10 - 12 months) life cycles was delayed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fossil shells of planktonic foraminifera serve as the prime source of information on past changes in surface ocean conditions. Because the population size of planktonic foraminifera species changes throughout the year, the signal preserved in fossil shells is biased towards the conditions when species production was at its maximum. The amplitude of the potential seasonal bias is a function of the magnitude of the seasonal cycle in production. Here we use a planktonic foraminifera model coupled to an ecosystem model to investigate to what degree seasonal variations in production of the species Neogloboquadrina pachyderma may affect paleoceanographic reconstructions during Heinrich Stadial 1 (~18-15 cal. ka B.P.) in the North Atlantic Ocean. The model implies that during Heinrich Stadial 1 the maximum seasonal production occurred later in the year compared to the Last Glacial Maximum (~21-19 cal. ka B.P.) and the pre-industrial era north of 30 ºN. A diagnosis of the model output indicates that this change reflects the sensitivity of the species to the seasonal cycle of sea-ice cover and food supply, which collectively lead to shifts in the modeled maximum production from the Last Glacial Maximum to Heinrich Stadial 1 by up to six months. Assuming equilibrium oxygen isotopic incorporation in the shells of N. pachyderma, the modeled changes in seasonality would result in an underestimation of the actual magnitude of the meltwater isotopic signal recorded by fossil assemblages of N. pachyderma wherever calcification is likely to take place.