846 resultados para Screen-printed electrode
Resumo:
In the year 1702 two books were published, in Oxford and Paris, that can now be seen as defining the presses that produced them. In Paris, the Imprimerie Royale issued the Médailles sur les principaux évènements du règne de Louis le Grand, a large folio of text and plates intended to glorify the regime of Louis XIV. In Oxford, the first, large format volume of Clarendon’s The history of the rebellion appeared; painstakingly edited at Christ Church, it brought prestige and profit to the University. Both were considerable statements of publishing intent in graphic form: both were sumptuous, and both used types and decorations reserved to their respective presses. But the French book points the way to future developments in typography, particularly in the design of type, while the Oxford book is a summation of the past, and its types and page design would be abandoned by the Oxford press in little more than thirty years. Tracing the printed pages of Oxford books from the late sixteenth to the mid-eighteenth century shows changes that parallel wider developments in English and European typography, but from a distinctly Oxford perspective.
Resumo:
Contrary to the dearly held belief by Britons that among the nations of the world, they are the favourites of the Americans, Holliwood movies show that even today, judging by the accents of "baddies", the English incarnate the arch-enemy. French villains come a close second. Britain and France are the reactionary, corrupt "old Europe" from whom the Americans tried to cut away ever since 1775, and it is actually the Central-East European countries who as "new Europe" enjoy greater popularity as bearers of hope.
Resumo:
Aims Potatoes have an inadequate rooting system for efficient acquisition of water and minerals and use disproportionate amounts of irrigation and fertilizer. This research determines whether significant variation in rooting characteristics of potato exists, which characters correlate with final yield and whether a simple screen for rooting traits could be developed. Methods Twenty-eight genotypes of Solanum tuberosum groups Tuberosum and Phureja were grown in the field; eight replicate blocks to final harvest, while entire root systems were excavated from four blocks. Root classes were categorised and measured. The same measurements were made on these genotypes in the glasshouse, 2 weeks post emergence. Results In the field, total root length varied from 40 m to 112 m per plant. Final yield was correlated negatively with basal root specific root length and weakly but positively with total root weight. Solanum tuberosum group Phureja genotypes had more numerous roots and proportionally more basal than stolon roots compared with Solanum tuberosum, group Tuberosum genotypes. There were significant correlations between glasshouse and field measurements. Conclusions Our data demonstrate that variability in rooting traits amongst commercially available potato genotypes exists and a robust glasshouse screen has been developed. By measuring potato roots as described in this study, it is now possible to assess rooting traits of large populations of potato genotypes.
Resumo:
This article considers ideas about the suitability of experimental, non-naturalist, narrative forms in theatre and television, through the example of a 1965 BBC2 adaptation of J. B. Priestley's 1939 play Johnson over Jordan. Using both textual analysis of the programme and research into the BBC production documentation, this essay explains how the circumstances and conditions of 1960s television adaptation and the star casting of Sir Ralph Richardson transformed Priestley's stage play. The TV adaptation achieved cosmic effects on an intimate scale, through inference and the imaginative integration of the studio space with dubbed sound.
Resumo:
Background Cortical cultures grown long-term on multi-electrode arrays (MEAs) are frequently and extensively used as models of cortical networks in studies of neuronal firing activity, neuropharmacology, toxicology and mechanisms underlying synaptic plasticity. However, in contrast to the predominantly asynchronous neuronal firing activity exhibited by intact cortex, electrophysiological activity of mature cortical cultures is dominated by spontaneous epileptiform-like global burst events which hinders their effective use in network-level studies, particularly for neurally-controlled animat (‘artificial animal’) applications. Thus, the identification of culture features that can be exploited to produce neuronal activity more representative of that seen in vivo could increase the utility and relevance of studies that employ these preparations. Acetylcholine has a recognised neuromodulatory role affecting excitability, rhythmicity, plasticity and information flow in vivo although its endogenous production by cortical cultures and subsequent functional influence upon neuronal excitability remains unknown. Results Consequently, using MEA electrophysiological recording supported by immunohistochemical and RT-qPCR methods, we demonstrate for the first time, the presence of intrinsic cholinergic neurons and significant, endogenous cholinergic tone in cortical cultures with a characterisation of the muscarinic and nicotinic components that underlie modulation of spontaneous neuronal activity. We found that tonic muscarinic ACh receptor (mAChR) activation affects global excitability and burst event regularity in a culture age-dependent manner whilst, in contrast, tonic nicotinic ACh receptor (nAChR) activation can modulate burst duration and the proportion of spikes occurring within bursts in a spatio-temporal fashion. Conclusions We suggest that the presence of significant endogenous cholinergic tone in cortical cultures and the comparability of its modulatory effects to those seen in intact brain tissues support emerging, exploitable commonalities between in vivo and in vitro preparations. We conclude that experimental manipulation of endogenous cholinergic tone could offer a novel opportunity to improve the use of cortical cultures for studies of network-level mechanisms in a manner that remains largely consistent with its functional role.
Resumo:
The bewildering complexity of cortical microcircuits at the single cell level gives rise to surprisingly robust emergent activity patterns at the level of laminar and columnar local field potentials (LFPs) in response to targeted local stimuli. Here we report the results of our multivariate data-analytic approach based on simultaneous multi-site recordings using micro-electrode-array chips for investigation of the microcircuitary of rat somatosensory (barrel) cortex. We find high repeatability of stimulus-induced responses, and typical spatial distributions of LFP responses to stimuli in supragranular, granular, and infragranular layers, where the last form a particularly distinct class. Population spikes appear to travel with about 33 cm/s from granular to infragranular layers. Responses within barrel related columns have different profiles than those in neighbouring columns to the left or interchangeably to the right. Variations between slices occur, but can be minimized by strictly obeying controlled experimental protocols. Cluster analysis on normalized recordings indicates specific spatial distributions of time series reflecting the location of sources and sinks independent of the stimulus layer. Although the precise correspondences between single cell activity and LFPs are still far from clear, a sophisticated neuroinformatics approach in combination with multi-site LFP recordings in the standardized slice preparation is suitable for comparing normal conditions to genetically or pharmacologically altered situations based on real cortical microcircuitry.
Resumo:
Beckett’s sparse and minimalist pieces have continuously addressed the nature and characteristics of the media for which they were written. What does it mean when a work written specifically for television is transposed to the stage, as film director Atom Egoyan did in his 2006 version of Beckett’s Eh Joe? This article will focus on the implications of such a transposition and discuss how Egoyan’s version reveals the haptic interface present in the original piece, between body and technology, between the flesh and “spirit made light” of the electronic broadcast.
Resumo:
In this paper we present a compliant neural interface designed to record bladder afferent activity. We developed the implant's microfabrication process using multiple layers of silicone rubber and thin metal so that a gold microelectrode array is embedded within four parallel polydimethylsiloxane (PDMS) microchannels (5 mm long, 100 μm wide, 100 μm deep). Electrode impedance at 1 kHz was optimized using a reactive ion etching (RIE) step, which increased the porosity of the electrode surface. The electrodes did not deteriorate after a 3 month immersion in phosphate buffered saline (PBS) at 37 °C. Due to the unique microscopic topography of the metal film on PDMS, the electrodes are extremely compliant and can withstand handling during implantation (twisting and bending) without electrical failure. The device was transplanted acutely to anaesthetized rats, and strands of the dorsal branch of roots L6 and S1 were surgically teased and inserted in three microchannels under saline immersion to allow for simultaneous in vivo recordings in an acute setting. We utilized a tripole electrode configuration to maintain background noise low and improve the signal to noise ratio. The device could distinguish two types of afferent nerve activity related to increasing bladder filling and contraction. To our knowledge, this is the first report of multichannel recordings of bladder afferent activity.
Resumo:
By placing axons into polymeric micro-channels hosting embedded electrodes the extracellular amplitude of action potentials is greatly increased, allowing for robust recording and noise suppression. We are developing such an electrode interface to record electrical activity from bladder afferents to restore bladder control in patients suffering from spinal cord injury. Here we describe our microchannel electrode interface in terms of design, microfabrication and electrode characteristics and report on in vivo bladder function after implantation of teased dorsal rootlets within microchannels.
Resumo:
We have fabricated a compliant neural interface to record afferent nerve activity. Stretchable gold electrodes were evaporated on a polydimethylsiloxane (PDMS) substrate and were encapsulated using photo-patternable PDMS. The built-in microstructure of the gold film on PDMS allows the electrodes to twist and flex repeatedly, without loss of electrical conductivity. PDMS microchannels (5mm long, 100μm wide, 100μm deep) were then plasma bonded irreversibly on top of the electrode array to define five parallel-conduit implants. The soft gold microelectrodes have a low impedance of ~200kΩ at the 1kHz frequency range. Teased nerves from the L6 dorsal root of an anaesthetized Sprague Dawley rat were threaded through the microchannels. Acute tripolar recordings of cutaneous activity are demonstrated, from multiple nerve rootlets simultaneously. Confinement of the axons within narrow microchannels allows for reliable recordings of low amplitude afferents. This electrode technology promises exciting applications in neuroprosthetic devices including bladder fullness monitors and peripheral nervous system implants.
Resumo:
'Typeform dialogues', as originally planned for publication, was an interactive CD-based screen interface presenting a comparative survey of typeform history and description. The CD was to be held inside a printed book that included two essays and a User’s Manual. Although 'Typeform dialogues' (CD+book) was not completed as planned, a PDF file was published containing the User’s Manual, together with background information about the interface and the project it was part of. The User's Manual presents all interface sections and features (using screen grabs) and explains their editorial rationale, design, and function.
Resumo:
Group 6 complexes of the type [M(CO)4(bpy)] (M=Cr, Mo, W) are capable of behaving as electrochemical catalysts for the reduction of CO2 at potentials less negative than those for the reduction of the radical anions [M(CO)4(bpy)].−. Cyclic voltammetric, chronoamperometric and UV/Vis/IR spectro-electrochemical data reveal that five-coordinate [M(CO)3(bpy)]2− are the active catalysts. The catalytic conversion is significantly more efficient in N-methyl-2-pyrrolidone (NMP) compared to tetrahydrofuran, which may reflect easier CO dissociation from 1e−-reduced [M(CO)4(bpy)].− in the former solvent, followed by second electron transfer. The catalytic cycle may also involve [M(CO)4(H-bpy)]− formed by protonation of [M(CO)3(bpy)]2−, especially in NMP. The strongly enhanced catalysis using an Au working electrode is remarkable, suggesting that surface interactions may play an important role, too.