960 resultados para Scheduling, heuristic algorithms, blocking flow shop
Resumo:
Los dispositivos móviles modernos disponen cada vez de más funcionalidad debido al rápido avance de las tecnologías de las comunicaciones y computaciones móviles. Sin embargo, la capacidad de la batería no ha experimentado un aumento equivalente. Por ello, la experiencia de usuario en los sistemas móviles modernos se ve muy afectada por la vida de la batería, que es un factor inestable de difícil de control. Para abordar este problema, investigaciones anteriores han propuesto un esquema de gestion del consumo (PM) centrada en la energía y que proporciona una garantía sobre la vida operativa de la batería mediante la gestión de la energía como un recurso de primera clase en el sistema. Como el planificador juega un papel fundamental en la administración del consumo de energía y en la garantía del rendimiento de las aplicaciones, esta tesis explora la optimización de la experiencia de usuario para sistemas móviles con energía limitada desde la perspectiva de un planificador que tiene en cuenta el consumo de energía en un contexto en el que ésta es un recurso de primera clase. En esta tesis se analiza en primer lugar los factores que contribuyen de forma general a la experiencia de usuario en un sistema móvil. Después se determinan los requisitos esenciales que afectan a la experiencia de usuario en la planificación centrada en el consumo de energía, que son el reparto proporcional de la potencia, el cumplimiento de las restricciones temporales, y cuando sea necesario, el compromiso entre la cuota de potencia y las restricciones temporales. Para cumplir con los requisitos, el algoritmo clásico de fair queueing y su modelo de referencia se extienden desde los dominios de las comunicaciones y ancho de banda de CPU hacia el dominio de la energía, y en base a ésto, se propone el algoritmo energy-based fair queueing (EFQ) para proporcionar una planificación basada en la energía. El algoritmo EFQ está diseñado para compartir la potencia consumida entre las tareas mediante su planificación en función de la energía consumida y de la cuota reservada. La cuota de consumo de cada tarea con restricciones temporales está protegida frente a diversos cambios que puedan ocurrir en el sistema. Además, para dar mejor soporte a las tareas en tiempo real y multimedia, se propone un mecanismo para combinar con el algoritmo EFQ para dar preferencia en la planificación durante breves intervalos de tiempo a las tareas más urgentes con restricciones temporales.Las propiedades del algoritmo EFQ se evaluan a través del modelado de alto nivel y la simulación. Los resultados de las simulaciones indican que los requisitos esenciales de la planificación centrada en la energía pueden lograrse. El algoritmo EFQ se implementa más tarde en el kernel de Linux. Para evaluar las propiedades del planificador EFQ basado en Linux, se desarrolló un banco de pruebas experimental basado en una sitema empotrado, un programa de banco de pruebas multihilo, y un conjunto de pruebas de código abierto. A través de experimentos específicamente diseñados, esta tesis verifica primero las propiedades de EFQ en la gestión de la cuota de consumo de potencia y la planificación en tiempo real y, a continuación, explora los beneficios potenciales de emplear la planificación EFQ en la optimización de la experiencia de usuario para sistemas móviles con energía limitada. Los resultados experimentales sobre la gestión de la cuota de energía muestran que EFQ es más eficaz que el planificador de Linux-CFS en la gestión de energía, logrando un reparto proporcional de la energía del sistema independientemente de en qué dispositivo se consume la energía. Los resultados experimentales en la planificación en tiempo real demuestran que EFQ puede lograr de forma eficaz, flexible y robusta el cumplimiento de las restricciones temporales aunque se dé el caso de aumento del el número de tareas o del error en la estimación de energía. Por último, un análisis comparativo de los resultados experimentales sobre la optimización de la experiencia del usuario demuestra que, primero, EFQ es más eficaz y flexible que los algoritmos tradicionales de planificación del procesador, como el que se encuentra por defecto en el planificador de Linux y, segundo, que proporciona la posibilidad de optimizar y preservar la experiencia de usuario para los sistemas móviles con energía limitada. Abstract Modern mobiledevices have been becoming increasingly powerful in functionality and entertainment as the next-generation mobile computing and communication technologies are rapidly advanced. However, the battery capacity has not experienced anequivalent increase. The user experience of modern mobile systems is therefore greatly affected by the battery lifetime,which is an unstable factor that is hard to control. To address this problem, previous works proposed energy-centric power management (PM) schemes to provide strong guarantee on the battery lifetime by globally managing energy as the first-class resource in the system. As the processor scheduler plays a pivotal role in power management and application performance guarantee, this thesis explores the user experience optimization of energy-limited mobile systemsfrom the perspective of energy-centric processor scheduling in an energy-centric context. This thesis first analyzes the general contributing factors of the mobile system user experience.Then itdetermines the essential requirements on the energy-centric processor scheduling for user experience optimization, which are proportional power sharing, time-constraint compliance, and when necessary, a tradeoff between the power share and the time-constraint compliance. To meet the requirements, the classical fair queuing algorithm and its reference model are extended from the network and CPU bandwidth sharing domain to the energy sharing domain, and based on that, the energy-based fair queuing (EFQ) algorithm is proposed for performing energy-centric processor scheduling. The EFQ algorithm is designed to provide proportional power shares to tasks by scheduling the tasks based on their energy consumption and weights. The power share of each time-sensitive task is protected upon the change of the scheduling environment to guarantee a stable performance, and any instantaneous power share that is overly allocated to one time-sensitive task can be fairly re-allocated to the other tasks. In addition, to better support real-time and multimedia scheduling, certain real-time friendly mechanism is combined into the EFQ algorithm to give time-limited scheduling preference to the time-sensitive tasks. Through high-level modelling and simulation, the properties of the EFQ algorithm are evaluated. The simulation results indicate that the essential requirements of energy-centric processor scheduling can be achieved. The EFQ algorithm is later implemented in the Linux kernel. To assess the properties of the Linux-based EFQ scheduler, an experimental test-bench based on an embedded platform, a multithreading test-bench program, and an open-source benchmark suite is developed. Through specifically-designed experiments, this thesis first verifies the properties of EFQ in power share management and real-time scheduling, and then, explores the potential benefits of employing EFQ scheduling in the user experience optimization for energy-limited mobile systems. Experimental results on power share management show that EFQ is more effective than the Linux-CFS scheduler in managing power shares and it can achieve a proportional sharing of the system power regardless of on which device the energy is spent. Experimental results on real-time scheduling demonstrate that EFQ can achieve effective, flexible and robust time-constraint compliance upon the increase of energy estimation error and task number. Finally, a comparative analysis of the experimental results on user experience optimization demonstrates that EFQ is more effective and flexible than traditional processor scheduling algorithms, such as those of the default Linux scheduler, in optimizing and preserving the user experience of energy-limited mobile systems.
Resumo:
One of the most promising areas in which probabilistic graphical models have shown an incipient activity is the field of heuristic optimization and, in particular, in Estimation of Distribution Algorithms. Due to their inherent parallelism, different research lines have been studied trying to improve Estimation of Distribution Algorithms from the point of view of execution time and/or accuracy. Among these proposals, we focus on the so-called distributed or island-based models. This approach defines several islands (algorithms instances) running independently and exchanging information with a given frequency. The information sent by the islands can be either a set of individuals or a probabilistic model. This paper presents a comparative study for a distributed univariate Estimation of Distribution Algorithm and a multivariate version, paying special attention to the comparison of two alternative methods for exchanging information, over a wide set of parameters and problems ? the standard benchmark developed for the IEEE Workshop on Evolutionary Algorithms and other Metaheuristics for Continuous Optimization Problems of the ISDA 2009 Conference. Several analyses from different points of view have been conducted to analyze both the influence of the parameters and the relationships between them including a characterization of the configurations according to their behavior on the proposed benchmark.
Resumo:
Control of linear flow instabilities has been demonstrated to be an effective theoretical flow control methodology, capable of modifying transitional flows on canonical geometries such as the plane channel and the flat-plate boundary layer. Extending the well-developed theoretical flow control techniques to flows over or through complex geometries requires addressing the issue of efficient capturing of the leading members of the global eigenspectrum pertinent to such flows. The present contribution describes state-of-the-art modal global instability analysis methodologies recently developed in our group, based on matrix formation and time-stepping, respectively. The relative performance of these algorithms is assessed on the recovery of BiGlobal and TriGlobal eigenspectra in the spanwise periodic and the cubic lid-driven cavity, respectively; the adjoint eigenspectrum in the latter flow is recovered for the first time. For three-dimensional flows without any homogeneous spatial direction, the time-stepping methodology was found to outperform the matrix-forming approach and permit recovering the leading TriGlobal eigenmodes in an three-dimensional open cavity of aspect ratio L : D : W = 5 : 1 : 1; theoretical flow control of this configuration is underway.
Resumo:
PURPOSE The decision-making process plays a key role in organizations. Every decision-making process produces a final choice that may or may not prompt action. Recurrently, decision makers find themselves in the dichotomous question of following a traditional sequence decision-making process where the output of a decision is used as the input of the next stage of the decision, or following a joint decision-making approach where several decisions are taken simultaneously. The implication of the decision-making process will impact different players of the organization. The choice of the decision- making approach becomes difficult to find, even with the current literature and practitioners’ knowledge. The pursuit of better ways for making decisions has been a common goal for academics and practitioners. Management scientists use different techniques and approaches to improve different types of decisions. The purpose of this decision is to use the available resources as well as possible (data and techniques) to achieve the objectives of the organization. The developing and applying of models and concepts may be helpful to solve managerial problems faced every day in different companies. As a result of this research different decision models are presented to contribute to the body of knowledge of management science. The first models are focused on the manufacturing industry and the second part of the models on the health care industry. Despite these models being case specific, they serve the purpose of exemplifying that different approaches to the problems and could provide interesting results. Unfortunately, there is no universal recipe that could be applied to all the problems. Furthermore, the same model could deliver good results with certain data and bad results for other data. A framework to analyse the data before selecting the model to be used is presented and tested in the models developed to exemplify the ideas. METHODOLOGY As the first step of the research a systematic literature review on the joint decision is presented, as are the different opinions and suggestions of different scholars. For the next stage of the thesis, the decision-making process of more than 50 companies was analysed in companies from different sectors in the production planning area at the Job Shop level. The data was obtained using surveys and face-to-face interviews. The following part of the research into the decision-making process was held in two application fields that are highly relevant for our society; manufacturing and health care. The first step was to study the interactions and develop a mathematical model for the replenishment of the car assembly where the problem of “Vehicle routing problem and Inventory” were combined. The next step was to add the scheduling or car production (car sequencing) decision and use some metaheuristics such as ant colony and genetic algorithms to measure if the behaviour is kept up with different case size problems. A similar approach is presented in a production of semiconductors and aviation parts, where a hoist has to change from one station to another to deal with the work, and a jobs schedule has to be done. However, for this problem simulation was used for experimentation. In parallel, the scheduling of operating rooms was studied. Surgeries were allocated to surgeons and the scheduling of operating rooms was analysed. The first part of the research was done in a Teaching hospital, and for the second part the interaction of uncertainty was added. Once the previous problem had been analysed a general framework to characterize the instance was built. In the final chapter a general conclusion is presented. FINDINGS AND PRACTICAL IMPLICATIONS The first part of the contributions is an update of the decision-making literature review. Also an analysis of the possible savings resulting from a change in the decision process is made. Then, the results of the survey, which present a lack of consistency between what the managers believe and the reality of the integration of their decisions. In the next stage of the thesis, a contribution to the body of knowledge of the operation research, with the joint solution of the replenishment, sequencing and inventory problem in the assembly line is made, together with a parallel work with the operating rooms scheduling where different solutions approaches are presented. In addition to the contribution of the solving methods, with the use of different techniques, the main contribution is the framework that is proposed to pre-evaluate the problem before thinking of the techniques to solve it. However, there is no straightforward answer as to whether it is better to have joint or sequential solutions. Following the proposed framework with the evaluation of factors such as the flexibility of the answer, the number of actors, and the tightness of the data, give us important hints as to the most suitable direction to take to tackle the problem. RESEARCH LIMITATIONS AND AVENUES FOR FUTURE RESEARCH In the first part of the work it was really complicated to calculate the possible savings of different projects, since in many papers these quantities are not reported or the impact is based on non-quantifiable benefits. The other issue is the confidentiality of many projects where the data cannot be presented. For the car assembly line problem more computational power would allow us to solve bigger instances. For the operation research problem there was a lack of historical data to perform a parallel analysis in the teaching hospital. In order to keep testing the decision framework it is necessary to keep applying more case studies in order to generalize the results and make them more evident and less ambiguous. The health care field offers great opportunities since despite the recent awareness of the need to improve the decision-making process there are many opportunities to improve. Another big difference with the automotive industry is that the last improvements are not spread among all the actors. Therefore, in the future this research will focus more on the collaboration between academia and the health care sector.
Resumo:
RESUMO Simulações de aeroacústica computacional demandam uma quantidade considerável de tempo, o que torna complicada a realização de estudos paramétricos. O presente trabalho propõe uma metodologia viável para otimização aeroacústica. Através da análise numérica utilizando dinâmica dos fluidos computacional, foi estudada a aplicação de uma placa separadora desacoplada como método de controle passivo da esteira turbulenta de um cilindro e avaliou-se a irradiação de ruído causado pela interação do escoamento com ambos os corpos, empregando ferramentas de aeroacústica computacional baseadas no método de Ffowcs-Williams e Hawkings. Algumas abordagens distintas de metodologias de otimização de projeto foram aplicadas neste problema, com o objetivo de chegar a uma configuração otimizada que permita a redução do nível sonoro ao longe. Assim, utilizando uma ferramenta de otimização multidisciplinar, pode-se avaliar a capacidade de modelos heurísticos e a grande vantagem do emprego de algoritmos baseados em método de superfície de resposta quando aplicados em um problema não linear, pois requerem a avaliação de um menor número de alternativas para se obter um ponto ótimo. Além disso, foi possível identificar e agrupar os resultados em 5 clusters baseados em seus parâmetros geométricos, nível de pressão sonora global e o valor quadrático médio do coeficiente de arrasto, confirmando a eficiência da aplicação de placas separadoras longas desacopladas posicionadas próximas ao cilindro na estabilização da esteira turbulenta, enquanto que o posicionamento de placas acima de um espaçamento crítico aumentou o nível de pressão acústica irradiado devido à formação de vórtices no espaço entre o cilindro e a placa separadora.
Resumo:
This paper presents a new multi-depot combined vehicle and crew scheduling algorithm, and uses it, in conjunction with a heuristic vehicle routing algorithm, to solve the intra-city mail distribution problem faced by Australia Post. First we describe the Australia Post mail distribution problem and outline the heuristic vehicle routing algorithm used to find vehicle routes. We present a new multi-depot combined vehicle and crew scheduling algorithm based on set covering with column generation. The paper concludes with a computational investigation examining the affect of different types of vehicle routing solutions on the vehicle and crew scheduling solution, comparing the different levels of integration possible with the new vehicle and crew scheduling algorithm and comparing the results of sequential versus simultaneous vehicle and crew scheduling, using real life data for Australia Post distribution networks.
Resumo:
A complete workflow specification requires careful integration of many different process characteristics. Decisions must be made as to the definitions of individual activities, their scope, the order of execution that maintains the overall business process logic, the rules governing the discipline of work list scheduling to performers, identification of time constraints and more. The goal of this paper is to address an important issue in workflows modelling and specification, which is data flow, its modelling, specification and validation. Researchers have neglected this dimension of process analysis for some time, mainly focussing on structural considerations with limited verification checks. In this paper, we identify and justify the importance of data modelling in overall workflows specification and verification. We illustrate and define several potential data flow problems that, if not detected prior to workflow deployment may prevent the process from correct execution, execute process on inconsistent data or even lead to process suspension. A discussion on essential requirements of the workflow data model in order to support data validation is also given..
Resumo:
The distribution of finished products from depots to customers is a practical and challenging problem in logistics management. Better routing and scheduling decisions can result in higher level of customer satisfaction because more customers can be served in a shorter time. The distribution problem is generally formulated as the vehicle routing problem (VRP). Nevertheless, there is a rigid assumption that there is only one depot. In cases, for instance, where a logistics company has more than one depot, the VRP is not suitable. To resolve this limitation, this paper focuses on the VRP with multiple depots, or multi-depot VRP (MDVRP). The MDVRP is NP-hard, which means that an efficient algorithm for solving the problem to optimality is unavailable. To deal with the problem efficiently, two hybrid genetic algorithms (HGAs) are developed in this paper. The major difference between the HGAs is that the initial solutions are generated randomly in HGA1. The Clarke and Wright saving method and the nearest neighbor heuristic are incorporated into HGA2 for the initialization procedure. A computational study is carried out to compare the algorithms with different problem sizes. It is proved that the performance of HGA2 is superior to that of HGA1 in terms of the total delivery time.
Resumo:
This paper focuses on minimizing printed circuit board (PCB) assembly time for a chipshootermachine, which has a movable feeder carrier holding components, a movable X–Y table carrying a PCB, and a rotary turret with multiple assembly heads. The assembly time of the machine depends on two inter-related optimization problems: the component sequencing problem and the feeder arrangement problem. Nevertheless, they were often regarded as two individual problems and solved separately. This paper proposes two complete mathematical models for the integrated problem of the machine. The models are verified by two commercial packages. Finally, a hybrid genetic algorithm previously developed by the authors is presented to solve the model. The algorithm not only generates the optimal solutions quickly for small-sized problems, but also outperforms the genetic algorithms developed by other researchers in terms of total assembly time.
Resumo:
A chip shooter machine for electronic component assembly has a movable feeder carrier, a movable X–Y table carrying a printed circuit board (PCB), and a rotary turret with multiple assembly heads. This paper presents a hybrid genetic algorithm (HGA) to optimize the sequence of component placements and the arrangement of component types to feeders simultaneously for a chip shooter machine, that is, the component scheduling problem. The objective of the problem is to minimize the total assembly time. The GA developed in the paper hybridizes different search heuristics including the nearest-neighbor heuristic, the 2-opt heuristic, and an iterated swap procedure, which is a new improved heuristic. Compared with the results obtained by other researchers, the performance of the HGA is superior in terms of the assembly time. Scope and purpose When assembling the surface mount components on a PCB, it is necessary to obtain the optimal sequence of component placements and the best arrangement of component types to feeders simultaneously in order to minimize the total assembly time. Since it is very difficult to obtain the optimality, a GA hybridized with several search heuristics is developed. The type of machines being studied is the chip shooter machine. This paper compares the algorithm with a simple GA. It shows that the performance of the algorithm is superior to that of the simple GA in terms of the total assembly time.
Resumo:
This work is undertaken in the attempt to understand the processes at work at the cutting edge of the twist drill. Extensive drill life testing performed by the University has reinforced a survey of previously published information. This work demonstrated that there are two specific aspects of drilling which have not previously been explained comprehensively. The first concerns the interrelating of process data between differing drilling situations, There is no method currently available which allows the cutting geometry of drilling to be defined numerically so that such comparisons, where made, are purely subjective. Section one examines this problem by taking as an example a 4.5mm drill suitable for use with aluminium. This drill is examined using a prototype solid modelling program to explore how the required numerical information may be generated. The second aspect is the analysis of drill stiffness. What aspects of drill stiffness provide the very great difference in performance between short flute length, medium flute length and long flute length drills? These differences exist between drills of identical point geometry and the practical superiority of short drills has been known to shop floor drilling operatives since drilling was first introduced. This problem has been dismissed repeatedly as over complicated but section two provides a first approximation and shows that at least for smaller drills of 4. 5mm the effects are highly significant. Once the cutting action of the twist drill is defined geometrically there is a huge body of machinability data that becomes applicable to the drilling process. Work remains to interpret the very high inclination angles of the drill cutting process in terms of cutting forces and tool wear but aspects of drill design may already be looked at in new ways with the prospect of a more analytical approach rather than the present mix of experience and trial and error. Other problems are specific to the twist drill, such as the behaviour of the chips in the flute. It is now possible to predict the initial direction of chip flow leaving the drill cutting edge. For the future the parameters of further chip behaviour may also be explored within this geometric model.
Resumo:
Orthogonal frequency division multiplexing (OFDM) is becoming a fundamental technology in future generation wireless communications. Call admission control is an effective mechanism to guarantee resilient, efficient, and quality-of-service (QoS) services in wireless mobile networks. In this paper, we present several call admission control algorithms for OFDM-based wireless multiservice networks. Call connection requests are differentiated into narrow-band calls and wide-band calls. For either class of calls, the traffic process is characterized as batch arrival since each call may request multiple subcarriers to satisfy its QoS requirement. The batch size is a random variable following a probability mass function (PMF) with realistically maximum value. In addition, the service times for wide-band and narrow-band calls are different. Following this, we perform a tele-traffic queueing analysis for OFDM-based wireless multiservice networks. The formulae for the significant performance metrics call blocking probability and bandwidth utilization are developed. Numerical investigations are presented to demonstrate the interaction between key parameters and performance metrics. The performance tradeoff among different call admission control algorithms is discussed. Moreover, the analytical model has been validated by simulation. The methodology as well as the result provides an efficient tool for planning next-generation OFDM-based broadband wireless access systems.
Resumo:
Class-based service differentiation is provided in DiffServ networks. However, this differentiation will be disordered under dynamic traffic loads due to the fixed weighted scheduling. An adaptive weighted scheduling scheme is proposed in this paper to achieve fair bandwidth allocation among different service classes. In this scheme, the number of active flows and the subscribed bandwidth are estimated based on the measurement of local queue metrics, then the scheduling weights of each service class are adjusted for the per-flow fairness of excess bandwidth allocation. This adaptive scheme can be combined with any weighted scheduling algorithm. Simulation results show that, comparing with fixed weighted scheduling, it effectively improve the fairness of excess bandwidth allocation.
Resumo:
Cognitive Radio has been proposed as a key technology to significantly improve spectrum usage in wireless networks by enabling unlicensed users to access unused resource. We present new algorithms that are needed for the implementation of opportunistic scheduling policies that maximize the throughput utilization of resources by secondary users, under maximum interference constraints imposed by existing primary users. Our approach is based on the Belief Propagation (BP) algorithm, which is advantageous due to its simplicity and potential for distributed implementation. We examine convergence properties and evaluate the performance of the proposed BP algorithms via simulations and demonstrate that the results compare favorably with a benchmark greedy strategy. © 2013 IEEE.
Resumo:
In this paper, three iterative procedures (Landweber-Fridman, conjugate gradient and minimal error methods) for obtaining a stable solution to the Cauchy problem in slow viscous flows are presented and compared. A section is devoted to the numerical investigations of these algorithms. There, we use the boundary element method together with efficient stopping criteria for ceasing the iteration process in order to obtain stable solutions.