893 resultados para Scar tissue
Resumo:
NKT cells, defined as T cells expressing the NK cell marker NK1.1, are involved in tumor rejection and regulation of autoimmunity via the production of cytokines. We show in this study that two types of NKT cells can be defined on the basis of their reactivity to the monomorphic MHC class I-like molecule CD1d. One type of NKT cell is positively selected by CD1d and expresses a biased TCR repertoire together with a phenotype found on activated T cells. A second type of NKT cell, in contrast, develops in the absence of CD1d, and expresses a diverse TCR repertoire and a phenotype found on naive T cells and NK cells. Importantly, the two types of NKT cells segregate in distinct tissues. Whereas thymus and liver contain primarily CD1d-dependent NKT cells, spleen and bone marrow are enriched in CD1d-independent NKT cells. Collectively, our data suggest that recognition of tissue-specific ligands by the TCR controls localization and activation of NKT cells.
Resumo:
BACKGROUND/AIM: Both steatosis and insulin resistance have been linked to accelerated fibrosis in chronic hepatitis C. Connective tissue growth factor (CTGF) plays a major role in extracellular matrix production in fibrotic disorders including cirrhosis, and its expression is stimulated in vitro by insulin and glucose. We hypothesized that CTGF may link steatosis, insulin resistance and fibrosis. METHODS: We included 153 chronic hepatitis C patients enrolled in the Swiss Hepatitis C Cohort Study and for whom a liver biopsy and plasma samples were available. CTGF expression was assessed quantitatively by immunohistochemistry. In 94 patients (57 with genotypes non-3), plasma levels of glucose, insulin and leptin were also measured. CTGF synthesis was investigated by immunoblotting on LX-2 stellate cells. RESULTS: Connective tissue growth factor expression was higher in patients with steatosis (P=0.039) and in patients with fibrosis (P=0.008) than those without these features. CTGF levels were neither associated with insulinaemia or with glycaemia, nor with inflammation. By multiple regression analysis, CTGF levels were independently associated with steatosis, a past history of alcohol abuse, plasma leptin and HCV RNA levels; when only patients with genotypes non-3 were considered, CTGF levels were independently associated with a past history of alcohol abuse, plasma leptin levels and steatosis. Leptin stimulated CTGF synthesis in LX-2 cells. CONCLUSIONS: In patients with chronic hepatitis C and steatosis, CTGF may promote fibrosis independently of inflammation. CTGF may link steatosis and fibrosis via increased leptin levels.
Resumo:
Having determined in a phase I study the maximum tolerated dose of high-dose ifosfamide combined with high-dose doxorubicin, we now report the long-term results of a phase II trial in advanced soft-tissue sarcomas. Forty-six patients with locally advanced or metastatic soft-tissue sarcomas were included, with age <60 years and all except one in good performance status (0 or 1). The chemotherapy treatment consisted of ifosfamide 10 g m(-2) (continuous infusion for 5 days), doxorubicin 30 mg m(-2) day(-1) x 3 (total dose 90 mg m(-2)), mesna and granulocyte-colony stimulating factor. Cycles were repeated every 21 days. A median of 4 (1-6) cycles per patient was administered. Twenty-two patients responded to therapy, including three complete responders and 19 partial responders for an overall response rate of 48% (95% CI: 33-63%). The response rate was not different between localised and metastatic diseases or between histological types, but was higher in grade 3 tumours. Median overall survival was 19 months. Salvage therapies (surgery and/or radiotherapy) were performed in 43% of patients and found to be the most significant predictor for favourable survival (exploratory multivariate analysis). Haematological toxicity was severe, including grade > or =3 neutropenia in 59%, thrombopenia in 39% and anaemia in 27% of cycles. Three patients experienced grade 3 neurotoxicity and one patient died of septic shock. This high-dose regimen is toxic but nonetheless feasible in multicentre settings in non elderly patients with good performance status. A high response rate was obtained. Prolonged survival was mainly a function of salvage therapies.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily that can be activated by various xenobiotics and natural fatty acids. These transcription factors primarily regulate genes involved in lipid metabolism and also play a role in adipocyte differentiation. We present the expression patterns of the PPAR subtypes in the adult rat, determined by in situ hybridization using specific probes for PPAR-alpha, -beta and -gamma, and by immunohistochemistry using a polyclonal antibody that recognizes the three rat PPAR subtypes. In numerous cell types from either ectodermal, mesodermal, or endodermal origin, PPARs are coexpressed, with relative levels varying between them from one cell type to the other. PPAR-alpha is highly expressed in hepatocytes, cardiomyocytes, enterocytes, and the proximal tubule cells of kidney. PPAR-beta is expressed ubiquitously and often at higher levels than PPAR-alpha and -gamma. PPAR-gamma is expressed predominantly in adipose tissue and the immune system. Our results suggest new potential directions to investigate the functions of the different PPAR subtypes.
Resumo:
The distribution of the uncoupling protein (UCP) in brown adipocyte mitochondria of the hibernant Muscardinus avellanarius was obtained by ultrastructural immunocytochemistry. In both cryosections and sections of Lowicryl-embedded material UCP was localized in the mitochondrial cristae of brown adipocytes, but not in liver mitochondria. It should now be possible to easily identify the morphology of cells committed to BAT differentiation in the tissue as well as in cell culture.
Resumo:
Entamoeba histolytica, the protozoan parasite causing human amoebisis, has recently been found to comprise two genetically distinct forms, potentially pathogenic and constitutively nonpathogenic ones. Host tissue destruction by pathogenic forms is belived to result from cell functions mediaed by a lectin-type adherence receptor, a pore-forming peptide involved in host cell lysis, and abundant expression of cysteine proteinase(s). Isolation and molecular cloning of these amoeba products have provided the tools for structural analyses and manipulations of cell functions including comparisons between pathogenic and nonpathogenic forms.
Resumo:
Aside from ethical considerations, the primary requirement for usage of human tissues in basic or translational research is the thorough characterization of tissues. The second, but equally essential, requirement is that tissues be collected, processed, annotated, and preserved in optimal conditions. These requirements put the pathologist at the center of tissue banking activities and of research aimed at discovering new biomarkers. Pathologists not only provide information identifying the specimen but also make decisions on what materials should be biobanked, on the preservation conditions, and on the timeline of events that precede preservation and storage. This central position calls for increased recognition of the role of the pathologist by the biomolecular community and places new demands on the pathologist's workload and scope of scientific activities. These questions were addressed by an Expert Group Meeting of the European Biological and Biomolecular Research Infrastructure (BBMRI). While detailed recommendations are published elsewhere (Bevilacqua et al., Virchows Archivs, 2010, in press), this article outlines the strategic and technological issues identified by the Expert Group and identifies ways forward for better integration of pathology in the current thrust for development of biomarker-based "personalized medicine.
Resumo:
BACKGROUND: Individually, randomised trials have not shown conclusively whether adjuvant chemotherapy benefits adult patients with localised resectable soft-tissue sarcoma.METHODS: A quantitative meta-analysis of updated data from individual patients from all available randomised trials was carried out to assess whether adjuvant chemotherapy improves overall survival, recurrence-free survival, and local and distant recurrence-free intervals (RFI) and whether chemotherapy is differentially effective in patients defined by age, sex, disease status at randomisation, disease site, histology, grade, tumour size, extent of resection, and use of radiotherapy.FINDINGS: 1568 patients from 14 trials of doxorubicin-based adjuvant chemotherapy were included (median follow-up 9.4 years). Hazard ratios of 0.73 (95% CI 0.56-0.94, p = 0.016) for local RFI, 0.70 (0.57-0.85, p = 0.0003) for distant RFI, and 0.75 (0.64-0.87, p = 0.0001) for overall recurrence-free survival, correspond to absolute benefits from adjuvant chemotherapy of 6% (95% CI 1-10), 10% (5-15), and 10% (5-15), respectively, at 10 years. For overall survival the hazard ratio of 0.89 (0.76-1.03) was not significant (p = 0.12), but represents an absolute benefit of 4% (1-9) at 10 years. These results were not affected by prespecified changes in the groups of patients analysed. There was no consistent evidence that the relative effect of adjuvant chemotherapy differed for any subgroup of patients for any endpoint. However, the best evidence of an effect of adjuvant chemotherapy for survival was seen in patients with sarcomas of the extremities.INTERPRETATION: The meta-analysis provides evidence that adjuvant doxorubicin-based chemotherapy significantly improves the time to local and distant recurrence and overall recurrence-free survival. There is a trend towards improved overall survival.
Resumo:
Measuring tissue oxygenation in vivo is of interest in fundamental biological as well as medical applications. One minimally invasive approach to assess the oxygen partial pressure in tissue (pO2) is to measure the oxygen-dependent luminescence lifetime of molecular probes. The relation between tissue pO2 and the probes' luminescence lifetime is governed by the Stern-Volmer equation. Unfortunately, virtually all oxygen-sensitive probes based on this principle induce some degree of phototoxicity. For that reason, we studied the oxygen sensitivity and phototoxicity of dichlorotris(1, 10-phenanthroline)-ruthenium(II) hydrate [Ru(Phen)] using a dedicated optical fiber-based, time-resolved spectrometer in the chicken embryo chorioallantoic membrane. We demonstrated that, after intravenous injection, Ru(Phen)'s luminescence lifetime presents an easily detectable pO2 dependence at a low drug dose (1 mg∕kg) and low fluence (120 mJ∕cm2 at 470 nm). The phototoxic threshold was found to be at 10 J∕cm2 with the same wavelength and drug dose, i.e., about two orders of magnitude larger than the fluence necessary to perform a pO2 measurement. Finally, an illustrative application of this pO2 measurement approach in a hypoxic tumor environment is presented.
Resumo:
Multipotent mesenchymal stromal cells (MSCs) are a type of adult stem cells that can be easily isolated from various tissues and expanded in vitro. Many reports on their pluripotency and possible clinical applications have raised hopes and interest in MSCs. In an attempt to unify the terminology and the criteria to label a cell as MSC, in 2006 the International Society for Cellular Therapy (ISCT) proposed a standard set of rules to define the identity of these cells. However, MSCs are still extracted from different tissues, by diverse isolation protocols, are cultured and expanded in different media and conditions. All these variables may have profound effects on the selection of cell types and the composition of heterogeneous subpopulations, on the selective expansion of specific cell populations with totally different potentials and ergo, on the long-term fate of the cells upon in vitro culture. Therefore, specific molecular and cellular markers that identify MSCs subsets as well as standardization of expansion protocols for these cells are urgently needed. Here, we briefly discuss new useful markers and recent data supporting the rapidly emerging concept that many different types of progenitor cells are found in close association with blood vessels. This knowledge may promote the necessary technical improvements required to reduce variability and promote higher efficacy and safety when isolating and expanding these cells for therapeutic use. In the light of the discussed data, particularly the identification of new markers, and advances in the understanding of fundamental MSC biology, we also suggest a revision of the 2006 ISCT criteria.
Resumo:
OBJECTIVE: Atherosclerosis is a chronic inflammatory disease of major conduit arteries. Similarly, obesity and type 2 diabetes mellitus are associated with accumulation of macrophages in visceral white adipose tissue and pancreatic islets. Our goal was to characterize systemic inflammation in atherosclerosis with hypercholesterolemia, but without obesity. METHODS AND RESULTS: We compared 22-week-old apolipoprotein E knockout (ApoE(-/-)) with wild-type mice kept for 14 weeks on a high cholesterol (1.25%) diet (CD, n=8) and 8-week-old ApoE(-/-) with wild-type mice kept on a normal diet (ND, n=8). Hypercholesterolemic, atherosclerotic ApoE(-/-) mice on CD exhibited increased macrophages and T-cells in plaques and periadventitial adipose tissue that revealed elevated expression of MIP-1alpha, IL-1beta, IL-1 receptor, and IL-6. Mesenteric adipose tissue and pancreatic islets in ApoE(-/-) mice showed increased macrophages. Expression of IL-1beta was enhanced in mesenteric adipose tissue of ApoE(-/-) mice on CD. Furthermore, these mice exhibited steatohepatitis with macrophage and T-cell infiltrations as well as increased MIP-1alpha and IL-1 receptor expression. Blood glucose, insulin and total body weight did not differ between the groups. CONCLUSIONS: In hypercholesterolemic lean ApoE(-/-) mice, inflammation extends beyond atherosclerotic plaques to the periadventitial and visceral adipose tissue, liver, and pancreatic islets without affecting glucose homeostasis.
Resumo:
Cold acclimatization (4-5°C) is accompanied by 2-3 fold increase of brown adipose tissue (BAT). This rapid growth of interscapular BAT was studied after histamine depletion. In control rats maintained at room temperature (28 ± 2°C) the BAT histamine content was 23.4 ± 5.9 (mean ± SD) µg/g of tissue and cold acclimatization (5±1°C) produced a significant increase of BAT weight, but reduced the histamine content to 8.4 ± 1.9 µg/g. The total weight of BAT after 20 days of acclimatization was unaffected by depletion of histamine due to compound 48/80. The low level of histamine in BAT of cold acclimatized rats could be due to a fast rate of amine utilization; alternatively an altered synthesis or storage process may occur during acclimatization.
Resumo:
Abstract : Copy number variation (CNV) of DNA segments has recently gained considerable interest as a source of genetic variation likely to play a role in phenotypic diversity and evolution. Much effort has been put into the identification and mapping of regions that vary in copy number among seemingly normal individuals, both in humans and in a number of model organisms, using both bioinformatic and hybridization-based methods. Synteny studies suggest the existence of CNV hotspots in mammalian genomes, often in connection with regions of segmental duplication. CNV alleles can be in equilibrium within a population, but can also arise de novo between generations, illustrating the highly dynamic nature of these regions. A small number of studies have assessed the effect of CNV on single loci, however, at the genome-wide scale, the functional impact of CNV remains poorly studied. We have explored the influence of CNV on gene expression, first using the Williams-Beuren syndrome (WBS) associated deletion as a model, and second at the genome-wide scale in inbred mouse strains. We found that the WBS deletion influences the expression levels not only of the hemizygous genes, but also affects the euploid genes mapping nearby. Consistently, on a genome wide scale we observe that CNV genes are expressed at more variable levels than genes that do not vary in copy number. Likewise, CNVs influence the relative expression levels of genes that map to the flank of the genome rearrangements, thus globally influencing tissue transcriptomes. Further studies are warranted to complete cataloguing and fine mapping of CNV regions, as well as to elucidate the different mechanisms by which CNVs influence gene expression. Résumé : La variation en nombre de copies (copy number variation ou CNV) de segments d'ADN suscite un intérêt en tant que variation génétique susceptible de jouer un r81e dans la diversité phénotypique et l'évolution. Les régions variables en nombre de copies parmi des individus apparemment normaux ont été cartographiées et cataloguées au moyen de puces à ADN et d'analyse bioinformatique. L'étude de la synténie entre plusieurs espèces de mammifères laisse supposer l'existence de régions à haut taux de variation, souvent liées à des duplications segmentaires. Les allèles CNV peuvent être en équilibre au sein d'une population ou peuvent apparaître de novo. Ces faits illustrent la nature hautement dynamique de ces régions. Quelques études se sont penchées sur l'effet de la variation en nombre de copies de loci isolés, cependant l'impact de ce phénomène n'a pas été étudié à l'échelle génomique. Nous avons examiné l'influence des CNV sur l'expression des gènes. Dans un premier temps nous avons utilisé la délétion associée au syndrome de Williams-Beuren (WBS), puis, dans un second temps, nous avons poursuivi notre étude à l'échelle du génome, dans des lignées consanguines de souris. Nous avons établi que la délétion WBS influence l'expression non seulement des gènes hémizygotes, mais également celle des gènes euploïdes voisins. A l'échelle génomique, nous observons des phénomènes concordants. En effet, l'expression des gènes variant en nombre de copies est plus variable que celles des gènes ne variant pas. De plus, à l'instar de la délétion WBS, les CNV influencent l'expression des gènes adjacents, exerçant ainsi un impact global sur les profils d'expression dans les tissus. Résumé pour un large public : De nombreuses maladies ont pour cause un défaut génétique. Parmi les types de mutations, on compte la disparition (délétion) d'une partie de notre génome ou sa duplication. Bien que l'on connaisse les anomalies associées à certaines maladies, les mécanismes moléculaires par lesquels ces réarrangements de notre matériel génétique induisent les maladies sont encore méconnus. C'est pourquoi nous nous sommes intéressés à la régulation des gènes dans les régions susceptibles à délétion ou duplication. Dans ce travail, nous avons démontré que les délétions et les duplications influencent la régulation des gènes situés à proximité, et que ces changements interviennent dans plusieurs organes.