857 resultados para Salt-stimulated Lipase
Resumo:
Different molecular methods: BOX-PCR fingerprinting, R-FLP-PCR and sequencing of the 16S rDNA as well as the symbiotic genes nodC and nifH, were used to study the genetic diversity within a collection of nodulating bean rhizobia isolated from five soils of North-West Morocco. BOX fingerprints analysis of 241 isolates revealed 19 different BOX profiles. According to the PFLP-PCR and sequencing of 16S rDNA carried out on 45 representative isolates, 5 genotypes were obtained corresponding to the species Rhizobium etli, R. tropici, R. gallicum, R. leguminosarum and Sinorhizobium meliloti. The most abundant species were R. etli and R. tropici (61% and 24%, respectively). A high intraspecific diversity was observed among the R. etli isolates, while the R. tropici group was homogeneous. Most of the rhizobia studied belong to species known to nodulate common bean, while 2 species were unconventional microsymbionts: R. leguminosarum biovar viciae and S. meliloti. Our results, especially the nodulation promiscuity of common bean and the relation between the predominance of some species of rhizobia in particular soils and the salt content of these soils, indicate that there is a real need for a better understanding of the distribution of common bean rhizobia species in the soils of Morocco before any inoculation attempt.
Resumo:
Epidemiological data suggest that those who consume a diet rich in quercetin-containing foods may have a reduced risk of CVD. Furthermore, in vitro and ex vivo studies have observed the inhibition of collagen-induced platelet activation by quercetin. The aim of the present study was to investigate the possible inhibitory effects of quercetin ingestion from a dietary source on collagen-stimulated platelet aggregation and signalling. A double-blind randomised cross-over pilot study was undertaken. Subjects ingested a soup containing either a high or a low amount of quercetin. Plasma quercetin concentrations and platelet aggregation and signalling were assessed after soup ingestion. The high-quercetin soup contained 69 mg total quercetin compared with the low-quercetin soup containing 5 mg total quercetin. Plasma quercetin concentrations were significantly higher after high-quercetin soup ingestion than after low-quercetin soup ingestion and peaked at 2.59 (SEM 0.42) mu mol/l. Collagen-stimulated (0.5 mu g/ml) platelet aggregation was inhibited after ingestion of the high-quercetin soup in a time-dependent manner. Collagen-stimulated tyrosine phosphorylation of a key component of the collagen-signalling pathway via glycoprotein VI, Syk, was significantly inhibited by ingestion of the high-quercetin soup. The inhibition of Syk tyrosine phosphorylation was correlated with the area under the curve for the high-quercetin plasma profile. In conclusion, the ingestion of quercetin from a dietary source of onion soup could inhibit some aspects of collagen-stimulated platelet aggregation and signalling ex vivo. This further substantiates the epidemiological data suggesting that those who preferentially consume high amounts of quercetin-containing foods have a reduced risk of thrombosis and potential CVD risk.
Resumo:
Wheat, although moderately tolerant to salt, can not be cultivated in many areas. However, in the triticeae tribe, some of the wild wheat relatives are highly tolerant, e.g. Thinopyrum bessarabicum, which grows on the sea shore. Eight primary hexaploid tritipyrum lines, amphiploids between Triticum durum and Thinopyrum bessarabicum have been produced which can set seed in at least 250 mM NaCl. These tritipyrums (2n=6x=42, AABBEbEb) due to reasons such as brittle rachis, continuous production of tillers, late maturity, tall stature and meiotic instability will not fulfill the requirements of a successful commercial salt tolerant crop. To overcome such problems the substituted tritipyrum, in which selected Eb chromosomes are replaced by D genome chromosomes of 6x wheat, was produced from 6x tritipyrum x 6x wheat hybrids (F1: 2n=6x=42, AABBDEb) followed by selfing and backcrossing with 6x tritipyrum. The fertile plants among the above progenies were screened by the genomic fluorescent in situ hybridization technique to identify their Eb and D chromosome constitution. This study showed that producing tritiprum with variable numbers of Eb and D genome chromosomes is feasible and that FISH is a useful technique for determining the number of Eb chromosomes present.
Resumo:
This study evaluated the use of a bile-salt-hydrolyzing Lactobacillus fermentum strain as a probiotic with potential hypocholesterolemic properties. The effect of L. fermentum on representative microbial populations and overall metabolic activity of the human intestinal microbiota was investigated using a three-stage continuous culture system. Also, the use of galactooligosaccharides as a prebiotic to enhance growth and/or activity of the Lactobacillus strain was evaluated. Administration of L. fermentum resulted in a decrease in the overall bifidobacterial population (ca. 1 log unit). In the in vitro system, no significant changes were observed in the total bacterial, Lactobacillus, Bacteroides, and clostridial populations through L. fermentum supplementation. Acetate production decreased by 9 to 27%, while the propionate and butyrate concentrations increased considerably (50 to 90% and 52 to 157%, respectively). A general, although lesser, increase in the production of lactate was observed with the administration of the L. fermentum strain. Supplementation of the prebiotic to the culture medium did not cause statistically significant changes in either the numbers or the activity of the microbiota, although an increase in the butyrate production was seen (29 to 39%). Results from this in vitro study suggest that L.Fermentum KC5b is a candidate probiotic which may affect cholesterol metabolism. The short-chain fatty acid concentrations, specifically the molar proportion of propionate and/or bile salt deconjugation, are probably the major mechanism involved in the purported cholesterol-lowering properties of this strain.
Resumo:
An exaggerated postprandial lipaemic response is thought to play a central role in the development of an atherogenic lipoprotein phenotype, a recognized lipid risk factor for coronary heart disease. A small number of limited studies have compared postprandial lipaemia in subjects of varying age, but have not investigated mechanisms underlying age-associated changes in postprandial lipaemia. In order to test the hypothesis that impaired lipaemia in older subjects is associated with loss of insulin sensitivity, the present study compared the postprandial lipaemic and hormone responses for 9 h following a standard mixed meal in normolipidaemic healthy young and middle-aged men. Lipoprotein lipase (LPL) and hepatic lipase (HL) activities were determined in post-heparin plasma 9 h postprandially and on another occasion under fasting conditions. Postprandial plasma glucose (P < 0.02), retinyl ester (indirect marker for chylomicron particles; P < 0.005) and triacylglycerol (TAG)-rich lipoprotein (density < 1.006 g/ml fraction of plasma) TAG (P < 0.05) and retinyl ester (P < 0.005) responses were higher in middle-aged men, whereas plasma insulin responses were lower in this group (P < 0.001). Fasting and 9 h postprandial LPL and HL activities were also significantly lower in the middle-aged men compared with the young men (P < 0.006). In conclusion, the higher incremental postprandial TAG response in middle-aged men than young men was attributed to the accumulation of dietary-derived TAG-rich lipoproteins (density < 1.006 g/ml fraction of plasma) and occurred in the absence of marked differences in fasting TAG levels between the two groups. Fasting and postprandial LPL and HL activities were markedly lower in middle-aged men, but lack of statistical associations between measures of insulin response and post-heparin lipase activities, as well as between insulin and measures of postprandial lipaemia, suggest that this lower activity cannot be attributed to lack of sensitivity of lipases to activation by insulin. Alternatively, post-heparin lipase activities may not be good markers for the insulin-sensitive component of lipase that is activated postprandially.
Resumo:
Background: Quercetin, a flavonoid present in the human diet, which is found in high levels in onions, apples, tea and wine, has been shown previously to inhibit platelet aggregation and signaling in vitro. Consequently, it has been proposed that quercetin may contribute to the protective effects against cardiovascular disease of a diet rich in fruit and vegetables. Objectives: A pilot human dietary intervention study was designed to investigate the relationship between the ingestion of dietary quercetin and platelet function. Methods: Human subjects ingested either 150 mg or 300 mg quercetin-4'-O-beta-D-glucoside Supplement to determine the systemic availability of quercetin. Platelets were isolated from subjects to analyse collagen-stimulated cell signaling and aggregation. Results: Plasma quercetin concentrations peaked at 4.66 mum (+/-0.77) and 9.72mum (+/-1.38) 30min after ingestion of 150-mg and 300-mg doses of quercefin-4'-O-beta-D-glucoside, respectively, demonstrating that quercetin was bioavailable, with plasma concentrations attained in the range known to affect platelet function in vitro. Platelet aggregation was inhibited 30 and 120 min after ingestion of both doses of quercetin-4'-O-beta-D-glucoside. Correspondingly, collagen-stimulated tyrosine phosphorylation of total platelet proteins was inhibited. This was accorripanied by reduced tyrosine phosphorylation of the tyrosine kinase Syk and phospholipase Cgamma2, components of the platelet glycoprotein VI collagen receptor signaling pathway. Conclusions: This study provides new evidence of the relatively high systemic availability of quercetin in the form of quercetin-4'-O-beta-D-glucoside by supplementation, and implicates quercetin as a dietary inhibitor of platelet cell signaling and thrombus formation.
Resumo:
Background: The regulation of platelet function by pharmacological agents that modulate platelet signaling haspharmacolo proven a successful approach to the prevention of thrombosis. A variety of molecules present in the diet have been shown to inhibit platelet activation, including the antioxidant quercetin. Objectives: In this report we investigate the molecular mechanisms through which quercetin inhibits collagen-stimulated platelet aggregation. Methods: The effect of quercetin on platelet aggregation, intracellular calcium release, whole cell tyrosine phosphorylation and intracellular signaling events including tyrosine phosphorylation and kinase activity of proteins involved in the collagen-stimulated glycoprotein (GP) signaling pathway were investigated. Results: We report that quercetin inhibits collagen-stimulated whole cell protein tyrosine phosphorylation and intracellular mobilization of calcium, in a concentration-dependent manner. Quercetin was also found to inhibit various events in signaling generated by the collagen receptor GPVI. This includes collagen-stimulated tyrosine phosphorylation of the Fc receptor gamma-chain, Syk, LAT and phospholipase Cgamma2. Inhibition of phosphorylation of the Fc receptor gamma-chain suggests that quercetin inhibits early signaling events following stimulation of platelets with collagen. The activity of the kinases that phosphorylate the Fc receptor gamma-chain, Fyn and Lyn, as well as the tyrosine kinase Syk and phosphoinositide 3-kinase was also inhibited by quercetin in a concentration-dependent manner, both in whole cells and in isolation. Conclusions: The present results provide a molecular basis for the inhibition by quercetin of collagen-stimulated platelet activation, through inhibition of multiple components of the GPVI signaling pathway, and may begin to explain the proposed health benefits of high quercetin intake.
Resumo:
A whey salts mixture was used as a partial substitute for sodium chloride to provide a modified Na:K ratio (1:3.4) in the manufacture of white salted cheese using ultrafiltration. Reduction of chymosin addition from 20 to 8 mu L kg(-1) of cheese was also investigated. Variation of salt and chymosin levels did not result in any significant differences in composition and physicochemical properties. The rates of proteolysis in terms of water-soluble nitrogen (WSN) and nitrogen soluble in 12% trichloroacetic acid (TCA-SN) were affected by chymosin levels but not by salt treatment. Urea-PAGE electrophoretic analysis of caseins from the cheeses manufactured using three levels of chymosin and two salt types showed that the hydrolysis of alpha(s1)-casein was higher than for beta-caseins but the differences between the cheeses were not significant (P > 0.05). The chymosin level did not have a significant effect (P > 0.05) on hardness and fracturability, suggesting that any variation in hardness due to the initial hydrolysis was being confounded by other variables. Cheeses including the whey salts product were harder and more fracturable (P < 0.01) than the cheese treated with NaCl only. Both hardness and fracturability values decreased (P < 0.05) over the maturation period. The scores for bitterness were low; neither the effects of salt nor chymosin levels were significant (P > 0.05). (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This study demonstrated that both chymosin and salt-in-moisture (SM) were important factors for proteolysis in the manufacture of ultrafiltrated white-salted cheese, with significant effects on water-soluble nitrogen and nitrogen soluble in trichloroacetic acid. In contrast, the levels of free amino acids were not significantly affected by chymosin and salt treatments. The cheeses made using high levels of chymosin with low SM had lower levels of residual α(s1)- and β-casein at the end of ripening. On texture profile analysis, the hardness and fracturability of the cheeses significantly increased with SM and decreased during ripening. Increases in chymosin significantly contributed to the overall weakening of the structure throughout ripening. Bitter flavour was detected after 12 weeks in the cheese made with the higher chymosin level and lower SM, which could be the result of accumulation of γ-casein fractions. The sensory data indicated that the hedonic responses for low chymosin with low SM cheeses were good and acceptable in flavour, which may be due to the moderate levels of proteolysis products.
Resumo:
White-salted cheeses were prepared from ultrafiltered (UF) cows' milk and salted to give final salt-in-moisture (SM) levels of 2.5, 3.2 and 4.0%. The cheeses were stored at 5degreesC and 10degreesC for up to 15 weeks. The microflora was dominated by lactic acid bacteria (LAB) but some mould growth was evident within 15 weeks at all SM levels and both temperatures. Levels of water-soluble nitrogen (WSN), attributed to chymosin activity, increased significantly with time, the rate being inversely proportional to the SM level and increasing with storage temperature. Similar effects were noted for trichloroacetic acid-soluble nitrogen (TCA-SN) and free amino acid (FAA) levels, both of which would also be affected by bacterial protease activity. The proteolytic activity was reflected by changes in the hardness and fracturability of the cheeses.
Resumo:
The chemokine receptor, CCR5, responds to several chemokines leading to changes in activity in several signalling pathways. Here, we investigated the ability of different chemokines to provide differential activation of pathways. The effects of five CC chemokines acting at CCR5 were investigated for their ability to inhibit forskolin- stimulated 3'-5'-cyclic adenosine monophosphate (cAMP) accumulation and to stimulate Ca2+ mobilisation. in Chinese hamster ovary (CHO) cells expressing CCR5. Macrophage inflammatory protein 1 alpha (D26A) (MIP-1 alpha (D26A), CCL3 (D26A)), regulated on activation, normal T-cell expressed and secreted (RANTES, CCLS), MIP-1 beta (CCL4) and monocyte chemoattractant protein 2 (MCP-2, CCL8) were able to inhibit forskolin -stimulated CAMP accumulation, whilst MCP-4 (CCL13) could not elicit a response. CCL3 (D26A), CCL4, CCLS, CCL8 and CCL13 were able to stimulate Ca2+ mobilisation. through CCRS, although CCL3 (D26A) and CCL5 exhibited biphasic concentration-response curves. The Ca2+ responses induced by CCL4, CCL5, CCL8 and CCL13 were abolished by pertussis toxin, whereas the response to CCL3 (D26A) was only partially inhibited by pertussis toxin, indicating G(i/o)-independent signalling induced by this chemokine. Although the rank order of potency of chemokines was similar between the two assays, certain chemokines displayed different pharmacological profiles in cAMP inhibition and Ca2+ mobilisation assays. For instance, whilst CCL13 could not inhibit forskolin-stimulated cAMP accumulation, this chemokine was able to induce Ca2+ mobilisation via CCR5. It is concluded that different chemokines acting at CCR5 can induce different pharmacological responses, which may account for the broad spectrum of chemokines that can act at CCRS. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Background and purpose: Molecular mechanisms underlying the links between dietary intake of flavonoids and reduced cardiovascular disease risk are only partially understood. Key events in the pathogenesis of cardiovascular disease, particularly thrombosis, are inhibited by these polyphenolic compounds via mechanisms such as inhibition of platelet activation and associated signal transduction, attenuation of generation of reactive oxygen species, enhancement of nitric oxide production and binding to thromboxane A2 receptors. In vivo, effects of flavonoids are mediated by their metabolites, but the effects and modes of action of these compounds are not well-characterized. A good understanding of flavonoid structure–activity relationships with regard to platelet function is also lacking. Experimental approach: Inhibitory potencies of structurally distinct flavonoids (quercetin, apigenin and catechin) and plasma metabolites (tamarixetin, quercetin-3′-sulphate and quercetin-3-glucuronide) for collagen-stimulated platelet aggregation and 5-hydroxytryptamine secretion were measured in human platelets. Tyrosine phosphorylation of total protein, Syk and PLCγ2 (immunoprecipitation and Western blot analyses), and Fyn kinase activity were also measured in platelets. Internalization of flavonoids and metabolites in a megakaryocytic cell line (MEG-01 cells) was studied by fluorescence confocal microscopy. Key results: The inhibitory mechanisms of these compounds included blocking Fyn kinase activity and the tyrosine phosphorylation of Syk and PLCγ2 following internalization. Principal functional groups attributed to potent inhibition were a planar, C-4 carbonyl substituted and C-3 hydroxylated C ring in addition to a B ring catechol moiety. Conclusions and implications: The structure–activity relationship for flavonoids on platelet function presented here may be exploited to design selective inhibitors of cell signalling.
Resumo:
We study the effects of NaCl on the self-assembly of AAKLVFF and beta A beta AKLVFF in solution. Both AAKLVFF and beta A beta AKLVFF self-assemble into twisted fibers in aqueous solution. The addition of NaCl to aqueous solutions of AAKLVFF produces large crystal-like nanotapes which eventually precipitate. In contrast, highly twisted fibrils were observed for beta A beta AKLVFF solutions at low salt concentration, while a coexistence of highly twisted fibers and nanotubes was observed for beta A beta AKLVFF at high salt concentration. The self-assembled structures observed for beta A beta AKLVFF in NaCl solutions were ascribed to the progressive screening of the beta A beta AKLVFF surface charge caused by the addition of salt.
Resumo:
BACKGROUND: Peroxisome proliferator-activated receptor-(gamma) (PPAR(gamma)) is expressed in human platelets although in the absence of genomic regulation in these cells, its functions are unclear. OBJECTIVE: In the present study, we aimed to demonstrate the ability of PPAR(gamma) ligands to modulate collagen-stimulated platelet function and suppress activation of the glycoprotein VI (GPVI) signaling pathway. METHODS: Washed platelets were stimulated with PPAR(gamma) ligands in the presence and absence of PPAR(gamma) antagonist GW9662 and collagen-induced aggregation was measured using optical aggregometry. Calcium levels were measured by spectrofluorimetry in Fura-2AM-loaded platelets and tyrosine phosphorylation levels of receptor-proximal components of the GPVI signaling pathway were measured using immunoblot analysis. The role of PPAR(gamma) agonists in thrombus formation was assessed using an in vitro model of thrombus formation under arterial flow conditions. RESULTS: PPAR(gamma) ligands inhibited collagen-stimulated platelet aggregation that was accompanied by a reduction in intracellular calcium mobilization and P-selectin exposure. PPAR(gamma) ligands inhibited thrombus formation under arterial flow conditions. The incorporation of GW9662 reversed the inhibitory actions of PPAR(gamma) agonists, implicating PPAR(gamma) in the effects observed. Furthermore, PPAR(gamma) ligands were found to inhibit tyrosine phosphorylation levels of multiple components of the GPVI signaling pathway. PPAR(gamma) was found to associate with Syk and LAT after platelet activation. This association was prevented by PPAR(gamma) agonists, indicating a potential mechanism for PPAR(gamma) function in collagen-stimulated platelet activation. CONCLUSIONS: PPAR(gamma) agonists inhibit the activation of collagen-stimulation of platelet function through modulation of early GPVI signalling.
Resumo:
Background: Platelet activation by collagen depends on signals transduced by the glycoprotein (GP)VI–Fc receptor (FcR)-chain collagen receptor complex, which involves recruitment of phosphatidylinositol 3-kinase (PI3K) to phosphorylated tyrosines in the linker for activation of T cells (LAT). An interaction between the p85 regulatory subunit of PI3K and the scaffolding molecule Grb-2-associated binding protein-1 (Gab1), which is regulated by binding of the Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) to Gab1, has been shown in other cell types to sustain PI3K activity to elicit cellular responses. Platelet endothelial cell adhesion molecule-1 (PECAM-1) functions as a negative regulator of platelet reactivity and thrombosis, at least in part by inhibiting GPVI–FcR-chain signaling via recruitment of SHP-2 to phosphorylated immunoreceptor tyrosine-based inhibitory motifs in PECAM-1. Objective: To investigate the possibility that PECAM-1 regulates the formation of the Gab1–p85 signaling complexes, and the potential effect of such interactions on GPVI-mediated platelet activation in platelets. Methods: The ability of PECAM-1 signaling to modulate the LAT signalosome was investigated with immunoblotting assays on human platelets and knockout mouse platelets. Results: PECAM-1-associated SHP-2 in collagen-stimulated platelets binds to p85, which results in diminished levels of association with both Gab1 and LAT and reduced collagen-stimulated PI3K signaling. We therefore propose that PECAM-1-mediated inhibition of GPVI-dependent platelet responses result, at least in part, from recruitment of SHP-2–p85 complexes to tyrosine-phosphorylated PECAM-1, which diminishes the association of PI3K with activatory signaling molecules, such as Gab1 and LAT.