922 resultados para SURFACE-AREA CARBON
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A high surface area silica gel (737 ± m2 g-1) was synthesized modified through a two-step reaction with a 4-amino-2-mercaptopyrimidine ligand and applied to Cu(II) and Cd(II) adsorption from an aqueous medium. The modified material was characterized by FTIR, which showed that attachment of the molecule occurred via thiol groups at 2547 and 2600 cm-1, and by elemental analysis that indicated the presence of 0.0102 mmol of ligand. The data from adsorption experiments were adjusted to a modified Langmuir equation and the maximum adsorption capacity was 6.6 and 3.8 μmol g-1 for Cu(II) and Cd(II), respectively. After adjusting several parameters, the material was applied in the preconcentration of natural river water using a continuous flow system before and after sample mineralization, and the results showed a 10-fold enrichment factor. The proposed method was validated through preconcentration and analysis of certified standard reference material (1643e), whose results were in agreement with the values provided by the manufacturer.
Resumo:
This paper proposes a response surface methodology to evaluate the influence of the particle size and temperature as variables and their interaction on the sulfation process using two Brazilian limestones, a calcite (ICB) and a dolomite (DP). Experiments were performed according to an experimental design [central composite rotatable design (CCRD)] carried out on a thermogravimetric balance and a nitrogen adsorption porosimeter. In the SO 2 sorption process, DP was shown to be more efficient than ICB. The best results for both limestones in relation to conversion and Brunauer-Emmett-Teller (BET) surface area were obtained under central point conditions (545 μm and 850 C for DP and 274 μm and 815 C for ICB). The optimal values for conversion were 52% for DP and 37% for ICB. For BET surface area, the optimal values were 35 m2 g-1 for DP and 45 m2 g-1 for ICB. A relationship between conversion and pore size distribution has been established. The experiments that showed higher conversions also exhibited more pores in the region between 20 and 150 Å and larger BET surface area, indicating that the amount of smaller pores may be an important factor in the reactivity of limestones. © 2013 American Chemical Society.
Resumo:
Pós-graduação em Física - IGCE
Resumo:
Pós-graduação em Química - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A remoção de cromo hexavalente de soluções de surfactante aniônico (LAS) por carvão ativado granulado (CAG) comercial foi estudada. Na caracterização do CAG foram empregados métodos padronizados ASTM (diâmetro médio de Sauter, dDMS e pH) e método BET (S, área superficial específica). Os grupos de superfície e PCZ do adsorvente foram determinados, pelo método de Boehm e titulação potenciométrica, respectivamente. Os resultados da caracterização do adsorvente: dDMS=2,4 mm; pH=9,0; S=677,4 m² g-1; grupos básicos (70%) comparados com os grupos ácidos e o PCZ no intervalo de (4,8-8,6). Os ensaios de adsorção do surfactante LAS foram realizados em mesa agitadora (140 rpm/24 h./27 oC); 2,0 g CAG/50 mL de solução, as concentrações do LAS foram determinadas, pelo método padrão do azul de metileno. Os resultados obtidos da remoção percentual em função da concentração inicial e da remoção percentual em função da variação do tempo em todas as concentrações de LAS estudadas foram superiores a 99 %. Os ensaios de adsorção do metal Cr(VI) (5 – 20 mg/L) foram realizados em banho termostático (140 rpm/27 oC); 2,0 g CAG/50 mL de solução; 1 e 24 horas de processo e sem e com adição de surfactante (70; 140; 210; 280; 350; 533 e 700 mg/L). As concentrações iniciais e residuais de metal foram determinadas pelo método colorimétrico da 1,5 difenilcarbazida. A adsorção do metal, sem a adição de LAS não foi satisfatória, a remoção foi em torno de 15%. O percentual de remoção do metal com adição surfactante atingiu valores, em torno de 70% para a menor concentração do metal (5 mg/L) e entre (58 – 65%) paras as demais concentrações.
Resumo:
In this work, RVC samples were treated by plasma immersion ion implantation (PIII) for electrodes production. High-voltage pulses with amplitudes of -3.0 kV or -10.0 kV were applied to the RVC samples while the treatment time was 10, 20 and 30 minutes. Nitrogen, atmospheric air and H2:N2 mixture were employed as plasma sources. The samples were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. The SEM images present an apparent enhancement of the surface roughness after the treatment probably due to the surface sputtering during the PIII process. This observation is in agreement with the specific electrochemical surface area (SESA) of RVC electrodes. An increase was observed of the SESA values for the PIII treated samples compared to the untreated specimen. Some oxygen and nitrogen containing groups were introduced on the RVC surface after the PIII treatment. Both plasma-induced process: the surface roughening and the introduction of the polar species on the RVC surface are beneficial for the RVC electrodes application
Resumo:
Pós-graduação em Engenharia Civil - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Silica gel having a particle size between 0.2 and 0.05 mm and a specific surface area, S BET = 473 m 2 g -1, was chemically modified with benzimidazole. Adsorption isotherms of CuX 2 (X = Cl, Br or ClO 4) from ethanol and acetone solutions were studied at 298 K. The metal is bonded to the surface through the free nitrogen atom of the attached benzimidazole. The average number of ligands co-ordinated to the central metal ion was shown to depend on the solid surface loading by the solute. At low loading the electronic and ESR spectral parameters indicated that the copper ion is in a distorted-tetragonal symmetry field.
Resumo:
A novel, easily renewable nanocomposite interface based on layer-by-layer (LbL) assembled cationic/anionic layers of carbon nanotubes customized with biopolymers is reported. A simple approach is proposed to fabricate a nanoscale structure composed of alternating layers of oxidized multiwalled carbon nanotubes upon which is immobilized either the cationic enzyme organophosphorus hydrolase (OPH; MWNT−OPH) or the anionic DNA (MWNT−DNA). The presence of carbon nanotubes with large surface area, high aspect ratio and excellent conductivity provides reliable immobilization of enzyme at the interface and promotes better electron transfer rates. The oxidized MWNTs were characterized by thermogravimetric analysis and Raman spectroscopy. Fourier transform infrared spectroscopy showed the surface functionalization of the MWNTs and successful immobilization of OPH on the MWNTs. Scanning electron microscopy images revealed that MWNTs were shortened during sonication and that LbL of the MWNT/biopolymer conjugates resulted in a continuous surface with a layered structure. The catalytic activity of the biopolymer layers was characterized using absorption spectroscopy and electrochemical analysis. Experimental results show that this approach yields an easily fabricated catalytic multilayer with well-defined structures and properties for biosensing applications whose interface can be reactivated via a simple procedure. In addition, this approach results in a biosensor with excellent sensitivity, a reliable calibration profile, and stable electrochemical response.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this paper, Co/CeO2 catalysts, with different cobalt contents were prepared by the polymeric precursor method and were evaluated for the steam reforming of ethanol. The catalysts were characterized by N-2 physisorption (BET method), X-ray diffraction (XRD), UV-visible diffuse reflectance, temperature programmed reduction analysis (TPR) and field emission scanning electron microscopy (FEG-SEM). It was observed that the catalytic behavior could be influenced by the experimental conditions and the nature of the catalyst employed. Physical-chemical characterizations revealed that the cobalt content of the catalyst influences the metal-support interaction which results in distinct catalyst performances. The catalyst with the highest cobalt content showed the best performance among the catalysts tested, exhibiting complete ethanol conversion, hydrogen selectivity close to 66% and good stability at a reaction temperature of 600 degrees C. (c) 2012 Elsevier B.V. All rights reserved.