986 resultados para SHAPE TRANSITION
Resumo:
Proton second moment (M2) and spin-lattice relaxation time (T1) of Ammonium Hydrogen Bischloroacetate (ABCA) have been measured in the range 77-350 K. A value of 6.5 G2 has been observed for the second moment at room temperature, which is typical of NH4+ reorientation and also a second moment transition in the range 170-145 K indicates the freezing of NH4+ motion. The NMR signal disappears dicontinuously at 128 K. Proton spin-lattice relaxation time (T1) Vs temperature, yielded only one sharp miniumum of 1.9 msec which is again typical of NH4+ reorientation. A slope change at 250 K is also observed, prbably due to CH2 motion. Further, the FID signal disappears at 128 K. Thus the Tc appears to be 128 K (of two reported values 120 K and 128 K). Activation energies have been calculated and the mechanism of the phase transition is discussed.
Resumo:
In epithelial-mesenchymal transition (EMT), epithelial cells acquire traits typical for mesenchymal cells, dissociate their cell-cell junctions and gain the ability to migrate. EMT is essential during embryogenesis, but may also mediate cancer progression. Basement membranes are sheets of extracellular matrix that support epithelial cells. They have a major role in maintaining the epithelial phenotype and, in cancer, preventing cell migration, invasion and metastasis. Laminins are the main components of basement membranes and may actively contribute to malignancy. We first evaluated the differences between cell lines obtained from oral squamous cell carcinoma and its recurrence. As the results indicated a change from epithelial to fibroblastoid morphology, E-cadherin to N-cadherin switch, and change in expression of cytokeratins to vimentin intermediate filaments, we concluded that these cells had undergone EMT. We further induced EMT in primary tumour cells to gain knowledge of the effects of transcription factor Snail in this cell model. The E-cadherin repressors responsible for the EMT in these cells were ZEB-1, ZEB-2 and Snail, and ectopic expression of Snail was able to augment the levels of ZEB-1 and ZEB-2. We produced and characterized two monoclonal antibodies that specifically recognized Snail in cell lines and patient samples. By immunohistochemistry, Snail protein was found in mesenchymal tissues during mouse embryonal development, in fibroblastoid cells of healing skin wounds and in fibromatosis and sarcoma specimens. Furthermore, Snail localized to the stroma and borders of tumour cell islands in colon adenocarcinoma, and in laryngeal and cervical squamous cell carcinomas. Immunofluorescence labellings, immunoprecipitations and Northern and Western blots showed that EMT induced a progressive downregulation of laminin-332 and laminin-511 and, on the other hand, an induction of mesenchymal laminin-411. Chromatin immunoprecipitation revealed that Snail could directly bind upstream to the transcription start sites of both laminin α5 and α4 chain genes, thus regulating their expression. The levels of integrin α6β4, a receptor for laminin-332, as well as the hemidesmosomal complex proteins HD1/plectin and BP180 were downregulated in EMT-experienced cells. The expression of Lutheran glycoprotein, a specific receptor for laminin-511, was diminished, whereas the levels of integrins α6β1 and α1β1 and integrin-linked kinase were increased. In quantitative cell adhesion assays, the cells adhered potently to laminin-511 and fibronectin, but only marginally to laminin-411. Western blots and immunoprecipitations indicated that laminin-411 bound to fibronectin and could compromise cell adhesion to fibronectin in a dose-dependent manner. EMT induced a highly migratory and invasive tendency in oral squamous carcinoma cells. Actin-based adhesion and invasion structures, podosomes and invadopodia, were detected in the basal cell membranes of primary tumour and spontaneously transformed cancer cells, respectively. Immunofluorescence labellings showed marked differences in their morphology, as podosomes organized a ring structure with HD1/plectin, αII-spectrin, talin, focal adhesion kinase and pacsin 2 around the core filled with actin, cortactin, vinculin and filamin A. Invadopodia had no division between ring and core and failed to organize the ring proteins, but instead assembled tail-like, narrow actin cables that showed a talin-tensin switch. Time-lapse live-cell imaging indicated that both podosomes and invadopodia were long-lived entities, but the tails of invadopodia vigorously propelled in the cytoplasm and were occasionally released from the cell membrane. Invadopodia could also be externalized outside the cytoplasm, where they still retained the ability to degrade matrix. In 3D confocal imaging combined with in situ gelatin zymography, the podosomes of primary tumour cells were large, cylindrical structures that increased in time, whereas the invadopodia in EMT-driven cells were smaller, but more numerous and degraded the underlying matrix in significantly larger amounts. Fluorescence recovery after photobleaching revealed that the substructures of podosomes were replenished more rapidly with new molecules than those of invadopodia. Overall, our results indicate that EMT has a major effect on the transcription and synthesis of both intra- and extracellular proteins, including laminins and their receptors, and on the structure and dynamics of oral squamous carcinoma cells.
Resumo:
Poly(dG-Me5dC) is known to exhibit a B→Z transition in the presence of very high concentrations of NaCl. For the first time, we report the presence of a Z-structure in sodium concentrations as low as 0.5 mM. A novel Z B Z transition is observed as the salt concentration is gradually increased. The role of water structure in B to Z transitions is discussed.
Resumo:
GEODERM, a microcomputer-based solid modeller, which incorporates the parametric object model, is discussed. The entity-relationship model, which is used to describe the conceptual schema of the geometric database, is also presented. Three of the four modules of GEODERM, which have been implemented are described in some detail. They are the Solid Definition Language (SDL), the Solid Manipulation Language (SML) and the User-System Interface.
Resumo:
Interatomic L3(M)M23(M)V(O) and L3(M)V(O)V(O) Auger transitions of some transition-metal oxides are reported for the first time. The interatomic mode of decay becomes progressively more dominant (relative to the intra-atomic mode) as the metal d level gets depleted or as the oxidation state of the metal increases. The usefulness of interatomic Auger transitions in studying oxidation of metals has been examined.
Resumo:
Electron spectroscopic studies clearly demonstrate that modification of the surfaces of Mn, Fe and Ni metals by chlorine significantly decreases the strength of interaction between the metal and adsorbed molecules such as CO and N2. This is in contrast to the effect of electropositive additives such as Ba and Al which increase the adsorption bond strength significantly.
Resumo:
Marked changes in the LVV/LMV and LVV/LMM Auger intensity ratios of Co, Ni and Cu are observed on depositing Al on their surfaces. These changes, ascribed to charge-transfer or hybridization effects, are accompanied by changes in the intensity of the satellites next to the core levels of the transition metals.
Resumo:
We report linear and nonlinear optical properties of the biologically important Na doped ZnO nanoparticle dispersions. Interesting morphological changes involving a spherical to flowerlike transition have been observed with Na doping. Optical absorption measurements show an exciton absorption around 368 nm. Photoluminescence measurements reveal exciton recombination emission, along with shallow and deep trap emissions. The increased intensity of shallow trap emission with Na doping is attributed to oxygen deficiency and shape changes associated with doping. Nonlinear optical measurements show a predominantly two-photon induced, excited state absorption, when excited with 532 nm, 5 ns laser pulses, indicating potential optical limiting applications.
Resumo:
Monte Carlo simulations with realistic interaction potentials have been carried out on isopentane to investigate the glass transition. Intermolecular pair-correlation functions of the glass show distinct differences from those of the liquid, the CH-CH pair-correlation function being uniquely different from the other pair-correlation functions. The coordination number of the glass is higher than that of the liquid, and the packing in the glass seems to be mainly governed by the geometrical constraints of the molecule. Annealing affects the properties of the glass significantly.
Resumo:
We report a theoretical formulation for the mean cluster size distribution in a finite polycondensing system. Expressions for the mean number of n-mers with j bonds ( nj) are developed. Numerical calculations show that while the non-cyclic molecules make the dominant contribution to the small clusters, the large clusters are dominated by cyclic structures. The number of particles in ringless chains, n n,n-1, decays monotonically with n at all extents of reaction, but n n becomes bimodal near the gel point. We also find that the solvent plays an important role in the cluster size distribution.
Resumo:
Transition metal molybdates of the formulaAMoO4 whereA=Fe, Co or Ni exhibit a first-order phase transition between 670K–970K. An investigation of the lowtemperature (lt) and high-temperature (ht) phases by x-ray photoelectron spectroscopy, x-ray absorption spectroscopy, magnetic susceptibility and other physical methods shows that the phase transition is associated with a valence change of the typeA 2++Mo6+αA 3++Mo5+ in the cases of iron and cobalt molybdates.
Resumo:
Magnetic susceptibility studies of lead oxyhalide glasses containing high concentrations of transition metal oxides such as MnO and Fe2O3 have been performed. While they exhibit predominantly antiferromagnetic interactions, the low temperature (<100K) region is dominated by paramagnetic contributions. The behaviour in these glasses is found to be similar to that of covalent oxide glasses and is different from that of purely ionic sulphate glasses.
Resumo:
Spectroscopic studies on pd(CG)3 and pd(GC)3 have been carried out to elucidate the sequence dependence and effect of free 5'-phosphate on the B to Z transition. Unlike d(CG)3, pd(CG)3 fails to undergo salt-induced B to Z transition at ambient temperature. Model building studies have been carried out to determine the inhibitory role of the 5'-phosphate group, but have been unsuccessful.