480 resultados para SEYFERT-GALAXIES


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

N. Bostrom’s simulation argument and two additional assumptions imply that we are likely to live in a computer simulation. The argument is based upon the following assumption about the workings of realistic brain simulations: The hardware of a computer on which a brain simulation is run bears a close analogy to the brain itself. To inquire whether this is so, I analyze how computer simulations trace processes in their targets. I describe simulations as fictional, mathematical, pictorial, and material models. Even though the computer hardware does provide a material model of the target, this does not suffice to underwrite the simulation argument because the ways in which parts of the computer hardware interact during simulations do not resemble the ways in which neurons interact in the brain. Further, there are computer simulations of all kinds of systems, and it would be unreasonable to infer that some computers display consciousness just because they simulate brains rather than, say, galaxies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Significant observational progress in addressing the question of the origin and early evolution of galaxies has been made in the past few years, allowing for direct comparison of the epoch when most of the stars in the universe were forming to prevailing theoretical models. There is currently broad consistency between theoretical expectations and the observations, but rapid improvement in the data will provide much more critical tests of theory in the coming years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The history and the ultimate future fate of the universe as a whole depend on how much the expansion of the universe is decelerated by its own mass. In particular, whether the expansion of the universe will ever come to a halt can be determined from the past expansion. However, the mass density in the universe does not only govern the expansion history and the curvature of space, but in parallel also regulates the growth of hierarchical structure, including the collapse of material into the dense, virialized regions that we identify with galaxies. Hence, the formation of galaxies and their clustered distribution in space depend not only on the detailed physics of how stars are formed but also on the overall structure of the universe. Recent observational efforts, fueled by new large, ground-based telescopes and the Hubble Space Telescope, combined with theoretical progress, have brought us to the verge of determining the expansion history of the universe and space curvature from direct observation and to linking this to the formation history of galaxies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extremely strong observational evidence has recently been found for the presence of black holes orbiting a few relatively normal stars in our Milky Way Galaxy and also at the centers of some galaxies. The former generally have masses of 4–16 times the mass of the sun, whereas the latter are “supermassive black holes” with millions to billions of solar masses. The evidence for a supermassive black hole in the center of our galaxy is especially strong.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The determination of the three-dimensional layout of galaxies is critical to our understanding of the evolution of galaxies and the structures in which they lie, to our determination of the fundamental parameters of cosmology, and to our understanding of both the past and future histories of the universe at large. The mapping of the large scale structure in the universe via the determination of galaxy red shifts (Doppler shifts) is a rapidly growing industry thanks to technological developments in detectors and spectrometers at radio and optical wavelengths. First-order application of the red shift-distance relation (Hubble’s law) allows the analysis of the large-scale distribution of galaxies on scales of hundreds of megaparsecs. Locally, the large-scale structure is very complex but the overall topology is not yet clear. Comparison of the observed red shifts with ones expected on the basis of other distance estimates allows mapping of the gravitational field and the underlying total density distribution. The next decade holds great promise for our understanding of the character of large-scale structure and its origin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is argued that within the standard Big Bang cosmological model the bulk of the mass of the luminous parts of the large galaxies likely had been assembled by redshift z ∼ 10. Galaxy assembly this early would be difficult to fit in the widely discussed adiabatic cold dark matter model for structure formation, but it could agree with an isocurvature version in which the cold dark matter is the remnant of a massive scalar field frozen (or squeezed) from quantum fluctuations during inflation. The squeezed field fluctuations would be Gaussian with zero mean, and the distribution of the field mass therefore would be the square of a random Gaussian process. This offers a possibly interesting new direction for the numerical exploration of models for cosmic structure formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We review the current status of our knowledge of cosmic velocity fields, on both small and large scales. A new statistic is described that characterizes the incoherent, thermal component of the velocity field on scales less than 2h−1 Mpc (h is H0/100 km·s−1·Mpc−1, where H0 is the Hubble constant and 1 Mpc = 3.09 × 1022 m) and smaller. The derived velocity is found to be quite stable across different catalogs and is of remarkably low amplitude, consistent with an effective Ω ∼ 0.15 on this scale. We advocate the use of this statistic as a standard diagnostic of the small-scale kinetic energy of the galaxy distribution. The analysis of large-scale flows probes the velocity field on scales of 10–60 h−1 Mpc and should be adequately described by linear perturbation theory. Recent work has focused on the comparison of gravity or density fields derived from whole-sky redshift surveys of galaxies [e.g., the Infrared Astronomical Satellite (IRAS)] with velocity fields derived from a variety of sources. All the algorithms that directly compare the gravity and velocity fields suggest low values of the density parameter, while the POTENT analysis, using the same data but comparing the derived IRAS galaxy density field with the Mark-III derived matter density field, leads to much higher estimates of the inferred density. Since the IRAS and Mark-III fields are not fully consistent with each other, the present discrepancies might result from the very different weighting applied to the data in the competing methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Establishing accurate extragalactic distances has provided an immense challenge to astronomers since the 1920s. The situation has improved dramatically as better detectors have become available, and as several new, promising techniques have been developed. For the first time in the history of this difficult field, relative distances to galaxies are being compared on a case-by-case basis, and their quantitative agreement is being established. New instrumentation, the development of new techniques for measuring distances, and recent measurements with the Hubble Space telescope all have resulted in new distances to galaxies with precision at the ±5–20% level. The current statistical uncertainty in some methods for measuring H0 is now only a few percent; with systematic errors, the total uncertainty is approaching ±10%. Hence, the historical factor-of-two uncertainty in the value of the H0 is now behind us.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Astrophysical objects, ranging from meteorites to the entire universe, can be classified into about a dozen characteristic morphologies, at least as seen by a blurry eye. Some patterns exist over an enormously wide range of distance scales, apparently as a result of similar underlying physics. Bipolar ejection from protostars, binary systems, and active galaxies is perhaps the clearest example. The oral presentation included about 130 astronomical images which cannot be reproduced here.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In patients with rheumatoid arthritis the synovial membrane of the affected joint is infiltrated with lymphoid cells which may be arranged in structures resembling germinal centers. We have directly isolated such infiltrates to determine whether B-cell clones within them are selected and expanded in a process analogous to that which normally takes place in the germinal centers in secondary lymphoid organs. The data suggest that an antigen-driven process leads to the accumulation of B cells in the synovial membrane. The finding of identical sequences in consecutive sections suggests that under conditions of chronic stimulation, memory B cells may enter a stage of differentiation in which they proliferate without further accumulation of somatic mutations. Further we see intraclonal diversity which underlines the germinal center-like character of these infiltrates and demonstrates that a microenvironment is built up in this nonlymphoid tissue which supports antigen-dependent differentiation of B cells. This is the first demonstration, to our knowledge, of a germinal center-like reaction outside lymphoid tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Very-long-baseline radio interferometry images of the nuclear region of the nearby spiral galaxy M81 reveal the most compact galactic core outside the Galaxy of which the size has been determined: 700 x 300 astronomical units (AU). The observations exclude a starburst or supernova interpretation for the core. Instead they favor an active galactic nucleus. There is evidence for a northeastern jet bent by approximately 35 degrees over a length scale from 700 to 4000 AU. The jet is, on average, directed toward an extended emission region, probably a radio lobe, about 1 kiloparsec (kpc) away from the core. A corresponding emission region was found in the southwest at a distance of only 30 pc from the core. The observed jet is extremely stable and likely to be associated with a steady-state channel. There is no detectable motion along the jet beyond the nominal value of -60 +/- 60 km.s-1. The level of activities in the core region of M81 is intermediate between that of SgrA* and that of powerful radio galaxies and quasars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Predictions for the apparent velocity statistics under simple beaming models are presented and compared to the observations. The potential applications for tests of unification models and for cosmology (source counts, measurements of the Hubble constant H0 and the deceleration parameter q0) are discussed. First results from a large homogeneous survey are presented. The data do not show compelling evidence for the existence of intrinsically different populations of galaxies, BL Lacertae objects, or quasars. Apparent velocities betaapp in the range 1-5 h-1, where h = H0/100 km.s-1.Mpc-1 [1 megaparsec (Mpc) = 3.09 x 10(22) m], occur with roughly equal frequency; higher values, up to betaapp = 10 h-1, are rather more scarce than appeared to be the case from earlier work, which evidently concentrated on sources that are not representative of the general population. The betaapp distribution suggests that there might be a skewed distribution of Lorentz factors over the sample, with a peak at gammab approximately 2 h-1 and a tail up to at least gammab approximately 10 h-1. There appears to be a clearly rising upper envelope to the betaapp distribution when plotted as a function of observed 5-GHz luminosity; a combination of source counts and the apparent velocity statistics in a larger sample could provide much insight into the properties of radio jet sources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

I investigate the issue of whether the various subclasses of radio-loud galaxies are intrinsically the same but have been classified differently mainly due to their being viewed from different directions. Evidence for the two key elements of this popular version of the "unified scheme (US)," relativistic jets and nuclear tori, is updated. The case for the torus opening angle increasing with the radio luminosity of the active galactic nucleus (AGN) is freshly argued. Radio-loud AGN are particularly suited for testing the US, since their structures and polarization properties on different scales, as well as their overall radio sizes, provide useful statistical indicators of the relative orientations of their various subclasses. I summarize recent attempts to bring under a single conceptual framework the USs developed for radio-moderate [Fanaroff-Riley type I (FRI)] and radio-powerful (FRII) AGN. By focusing on FRII radio sources, I critically examine the recent claims of conflict with the US, based on the statistics of radio-size measurements for large, presumably orientation-independent, samples with essentially complete optical identifications. Possible ways of reconciling these results, and also the ones based on very-long-baseline radio interferometry polarimetric observations, with the US are pointed out. By incorporating a highly plausible temporal evolution of radio source properties into the US, I outline a scenario that allows the median linear size of quasars to approach, or even exceed, that of radio galaxies, as samples with decreasing radio luminosity are observed. Thus, even though a number of issues remain to be fully resolved, the scope of unified models continues to expand.