889 resultados para SENSING MEMBRANE
Resumo:
Nonstructural protein 4B (NS4B) plays an essential role in the formation of the hepatitis C virus (HCV) replication complex. It is an integral membrane protein that has been only poorly characterized to date. It is believed to comprise a cytosolic N-terminal part, a central part harboring four transmembrane passages, and a cytosolic C-terminal part. Here, we describe an amphipathic alpha-helix at the C terminus of NS4B (amino acid residues 229 to 253) that mediates membrane association and is involved in the formation of a functional HCV replication complex.
Resumo:
Securin and separase play a key role in sister chromatid separation during anaphase. However, a growing body of evidence suggests that in addition to regulating chromosome segregation, securin and separase display functions implicated in membrane traffic in Caenorhabditis elegans and Drosophila. Here we show that in mammalian cells both securin and separase associate with membranes and that depletion of either protein causes robust swelling of the trans-Golgi network (TGN) along with the appearance of large endocytic vesicles in the perinuclear region. These changes are accompanied by diminished constitutive protein secretion as well as impaired receptor recycling and degradation. Unexpectedly, cells depleted of securin or separase display defective acidification of early endosomes and increased membrane recruitment of vacuolar (V-) ATPase complexes, mimicking the effect of the specific V-ATPase inhibitor Bafilomycin A1. Taken together, our findings identify a new functional role of securin and separase in the modulation of membrane traffic and protein secretion that implicates regulation of V-ATPase assembly and function.
Resumo:
Bordetella pertussis is the bacterial agent of whooping cough in humans. Under iron-limiting conditions, it produces the siderophore alcaligin. Released to the extracellular environment, alcaligin chelates iron, which is then taken up as a ferric alcaligin complex via the FauA outer membrane transporter. FauA belongs to a family of TonB-dependent outer membrane transporters that function using energy derived from the proton motive force. Using an in-house protocol for membrane-protein expression, purification and crystallization, FauA was crystallized in its apo form together with three other TonB-dependent transporters from different organisms. Here, the protocol used to study FauA is described and its three-dimensional structure determined at 2.3 A resolution is discussed.
Morphological and physiological species-dependent characteristics of the rodent Grueneberg ganglion.
Resumo:
In the mouse, the Grueneberg ganglion (GG) is an olfactory subsystem implicated both in chemo- and thermo-sensing. It is specifically involved in the recognition of volatile danger cues such as alarm pheromones and structurally-related predator scents. No evidence for these GG sensory functions has been reported yet in other rodent species. In this study, we used a combination of histological and physiological techniques to verify the presence of a GG and investigate its function in the rat, hamster, and gerbil comparing with the mouse. By scanning electron microscopy (SEM) and transmitted electron microscopy (TEM), we found isolated or groups of large GG cells of different shapes that in spite of their gross anatomical similarities, display important structural differences between species. We performed a comparative and morphological study focusing on the conserved olfactory features of these cells. We found fine ciliary processes, mostly wrapped in ensheating glial cells, in variable number of clusters deeply invaginated in the neuronal soma. Interestingly, the glial wrapping, the amount of microtubules and their distribution in the ciliary processes were different between rodents. Using immunohistochemistry, we were able to detect the expression of known GG proteins, such as the membrane guanylyl cyclase G and the cyclic nucleotide-gated channel A3. Both the expression and the subcellular localization of these signaling proteins were found to be species-dependent. Calcium imaging experiments on acute tissue slice preparations from rodent GG demonstrated that the chemo- and thermo-evoked neuronal responses were different between species. Thus, GG neurons from mice and rats displayed both chemo- and thermo-sensing, while hamsters and gerbils showed profound differences in their sensitivities. We suggest that the integrative comparison between the structural morphologies, the sensory properties, and the ethological contexts supports species-dependent GG features prompted by the environmental pressure.
Resumo:
Using a substituted cysteine accessibility scan, we have investigated the structures that form the internal pore of the acid-sensing ion channel 1a. We have identified the amino acid residues Ala-22, Ile-33, and Phe-34 in the amino terminus and Arg-43 in the first transmembrane helix, which when mutated into cysteine, were modified by intracellular application of MTSET, resulting in channel inhibition. The inhibition of the R43C mutant by internal MTSET requires opening of the channel. In addition, binding of Cd2+ ions to R43C slows the channel inactivation. This indicates that the first transmembrane helix undergoes conformational changes during channel inactivation. The effect of Cd2+ on R43C can be obtained with Cd2+ applied at either the extracellular or the intracellular side, indicating that R43C is located in the channel pore. The block of the A22C, I33C, and F34C mutants by MTSET suggests that these residues in the amino terminus of the channel also participate to the internal pore.
Resumo:
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), represented by nonstructural protein 5B (NS5B), belongs to a class of integral membrane proteins termed tail-anchored proteins. Its membrane association is mediated by the C-terminal 21 amino acid residues, which are dispensable for RdRp activity in vitro. For this study, we investigated the role of this domain, termed the insertion sequence, in HCV RNA replication in cells. Based on a structural model and the amino acid conservation among different HCV isolates, we designed a panel of insertion sequence mutants and analyzed their membrane association and RNA replication. Subgenomic replicons with a duplication of an essential cis-acting replication element overlapping the sequence that encodes the C-terminal domain of NS5B were used to unequivocally distinguish RNA versus protein effects of these mutations. Our results demonstrate that the membrane association of the RdRp is essential for HCV RNA replication. Interestingly, certain amino acid substitutions within the insertion sequence abolished RNA replication without affecting membrane association, indicating that the C-terminal domain of NS5B has functions beyond serving as a membrane anchor and that it may be involved in critical intramembrane protein-protein interactions. These results have implications for the functional architecture of the HCV replication complex and provide new insights into the expanding spectrum of tail-anchored proteins.
Resumo:
Nanomotors are nanoscale devices capable of converting energy into movement and forces. Among them, self-propelled nanomotors offer considerable promise for developing new and novel bioanalytical and biosensing strategies based on the direct isolation of target biomolecules or changes in their movement in the presence of target analytes. The mainachievements of this project consists on the development of receptor-functionalized nanomotors that offer direct and rapid target detection, isolation and transport from raw biological samples without preparatory and washing steps. For example, microtube engines functionalized with aptamer, antibody, lectin and enzymes receptors were used for the direct isolation of analytes of biomedical interest, including proteins and whole cells, among others. A target protein was also isolated from a complex sample by using an antigen-functionalized microengine navigating into the reservoirs of a lab-on-a-chip device. The new nanomotorbased target biomarkers detection strategy not only offers highly sensitive, rapid, simple and low cost alternative for the isolation and transport of target molecules, but also represents a new dimension of analytical information based on motion. The recognition events can be easily visualized by optical microscope (without any sophisticated analytical instrument) to reveal the target presence and concentration. The use of artificial nanomachines has shown not only to be useful for (bio)recognition and (bio)transport but also for detection of environmental contamination and remediation. In this context, micromotors modified with superhydrophobic layer demonstrated that effectively interacted, captured, transported and removed oil droplets from oil contaminated samples. Finally, a unique micromotor-based strategy for water-quality testing, that mimics live-fish water-quality testing, based on changes in the propulsion behavior of artificial biocatalytic microswimmers in the presence of aquatic pollutants was also developed. The attractive features of the new micromachine-based target isolation and signal transduction protocols developed in this project offer numerous potential applications in biomedical diagnostics, environmental monitoring, and forensic analysis.
Resumo:
Report for the scientific sojourn carried out at the l’ Institute for Computational Molecular Science of the Temple University, United States, from 2010 to 2012. Two-component systems (TCS) are used by pathogenic bacteria to sense the environment within a host and activate mechanisms related to virulence and antimicrobial resistance. A prototypical example is the PhoQ/PhoP system, which is the major regulator of virulence in Salmonella. Hence, PhoQ is an attractive target for the design of new antibiotics against foodborne diseases. Inhibition of the PhoQ-mediated bacterial virulence does not result in growth inhibition, presenting less selective pressure for the generation of antibiotic resistance. Moreover, PhoQ is a histidine kinase (HK) and it is absent in animals. Nevertheless, the design of satisfactory HK inhibitors has been proven to be a challenge. To compete with the intracellular ATP concentrations, the affinity of a HK inhibidor must be in the micromolar-nanomolar range, whereas the current lead compounds have at best millimolar affinities. Moreover, the drug selectivity depends on the conformation of a highly variable loop, referred to as the “ATP-lid, which is difficult to study by X-Ray crystallography due to its flexibility. I have investigated the binding of different HK inhibitors to PhoQ. In particular, all-atom molecular dynamics simulations have been combined with enhanced sampling techniques in order to provide structural and dynamic information of the conformation of the ATP-lid. Transient interactions between these drugs and the ATP-lid have been identified and the free energy of the different binding modes has been estimated. The results obtained pinpoint the importance of protein flexibility in the HK-inhibitor binding, and constitute a first step in developing more potent and selective drugs. The computational resources of the hosting institution as well as the experience of the members of the group in drug binding and free energy methods have been crucial to carry out this work.
Resumo:
Land plants need precise thermosensors to timely establish molecular defenses in anticipation of upcoming noxious heat waves. The plasma membrane-embedded cyclic nucleotide-gated Ca(2+) channels (CNGCs) can translate mild variations of membrane fluidity into an effective heat shock response, leading to the accumulation of heat shock proteins (HSP) that prevent heat damages in labile proteins and membranes. Here, we deleted by targeted mutagenesis the CNGCd gene in two Physcomitrella patens transgenic moss lines containing either the heat-inducible HSP-GUS reporter cassette or the constitutive UBI-Aequorin cassette. The stable CNGCd knockout mutation caused a hyper-thermosensitive moss phenotype, in which the heat-induced entry of apoplastic Ca(2+) and the cytosolic accumulation of GUS were triggered at lower temperatures than in wild type. The combined effects of an artificial membrane fluidizer and elevated temperatures suggested that the gene products of CNGCd and CNGCb are paralogous subunits of Ca(2+)channels acting as a sensitive proteolipid thermocouple. Depending on the rate of temperature increase, the duration and intensity of the heat priming preconditions, terrestrial plants may thus acquire an array of HSP-based thermotolerance mechanisms against upcoming, otherwise lethal, extreme heat waves.
Resumo:
Ion imaging is a powerful methodology to assess fundamental biological processes in live cells. The limited efficiency of some ion-sensing probes and their fast leakage from cells are important restrictions to this approach. In this study, we present a novel strategy based on the use of dendrimer nanoparticles to obtain better intracellular retention of fluorescent probes and perform prolonged fluorescence imaging of intracellular ion dynamics. A new sodium-sensitive nanoprobe was generated by encapsulating a sodium dye in a PAMAM dendrimer nanocontainer. This nanoprobe is very stable and has high sodium sensitivity and selectivity. When loaded in neurons in live brain tissue, it homogenously fills the entire cell volume, including small processes, and stays for long durations, with no detectable alterations of cell functional properties. We demonstrate the suitability of this new sodium nanosensor for monitoring physiological sodium responses such as those occurring during neuronal activity.
Resumo:
The inhalation of airborne pollutants such as asbestos or silica is linked to inflammation of the lung, fibrosis and lung cancer. How the presence of pathogenic dust is recognised, and how chronic inflammatory diseases are triggered are poorly understood. We will se show that asbestos and silica are sensed by the Nalp3 inflammasome, whose subsequent activation leads to IL-1b secretion. Inflammasome activation is triggered by reactive oxygen species, which are generated by a NADPH oxidase upon particle phagocytosis. In a model of asbestos inhalation, Nalp3_/_ mice showed diminished recruitment of inflammatory cells to the lungs, paralleled by lower cytokine production. Our findings implicate the Nalp3 inflammasome in particulate matter-related pulmonary diseases and support its role as a major proinflammatory ''danger" receptor.
Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons.
Resumo:
Plasmacytoid dendritic cells (pDCs) are specialized type I interferon (IFN-α/β)-producing cells that express intracellular toll-like receptor (TLR) 7 and TLR9 and recognize viral nucleic acids in the context of infections. We show that pDCs also have the ability to sense host-derived nucleic acids released in common skin wounds. pDCs were found to rapidly infiltrate both murine and human skin wounds and to transiently produce type I IFNs via TLR7- and TLR9-dependent recognition of nucleic acids. This process was critical for the induction of early inflammatory responses and reepithelization of injured skin. Cathelicidin peptides, which facilitate immune recognition of released nucleic acids by promoting their access to intracellular TLR compartments, were rapidly induced in skin wounds and were sufficient but not necessary to stimulate pDC activation and type I IFN production. These data uncover a new role of pDCs in sensing tissue damage and promoting wound repair at skin surfaces.
Resumo:
Size and copy number of organelles are influenced by an equilibrium of membrane fusion and fission. We studied this equilibrium on vacuoles-the lysosomes of yeast. Vacuole fusion can readily be reconstituted and quantified in vitro, but it had not been possible to study fission of the organelle in a similar way. Here we present a cell-free system that reconstitutes fragmentation of purified yeast vacuoles (lysosomes) into smaller vesicles. Fragmentation in vitro reproduces physiological aspects. It requires the dynamin-like GTPase Vps1p, V-ATPase pump activity, cytosolic proteins, and ATP and GTP hydrolysis. We used the in vitro system to show that the vacuole-associated TOR complex 1 (TORC1) stimulates vacuole fragmentation but not the opposing reaction of vacuole fusion. Under nutrient restriction, TORC1 is inactivated, and the continuing fusion activity then dominates the fusion/fission equilibrium, decreasing the copy number and increasing the volume of the vacuolar compartment. This result can explain why nutrient restriction not only induces autophagy and a massive buildup of vacuolar/lysosomal hydrolases, but also leads to a concomitant increase in volume of the vacuolar compartment by coalescence of the organelles into a single large compartment.
Resumo:
PURPOSE: The outer limiting membrane (OLM) is considered to play a role in maintaining the structure of the retina through mechanical strength. However, the observation of junction proteins located at the OLM and its barrier permeability properties may suggest that the OLM may be part of the retinal barrier. MATERIAL AND METHODS: Normal and diabetic rat, monkey, and human retinas were used to analyze junction proteins at the OLM. Proteome analyses were performed using immunohistochemistry on sections and flat-mounted retinas and western blotting on protein extracts obtained from laser microdissection of the photoreceptor layers. Semi-thin and ultrastructure analyses were also reported. RESULTS: In the rat retina, in the subapical region zonula occludens-1 (ZO-1), junction adhesion molecule (JAM), an atypical protein kinase C, is present and the OLM shows dense labeling of occludin, JAM, and ZO-1. The presence of occludin has been confirmed using western blot analysis of the microdissected OLM region. In diabetic rats, occludin expression is decreased and glial cells junctions are dissociated. In the monkey retina, occludin, JAM, and ZO-1 are also found in the OLM. Junction proteins have a specific distribution around cone photoreceptors and Müller glia. Ultrastructural analyses suggest that structures like tight junctions may exist between retinal glial Müller cells and photoreceptors. CONCLUSIONS: In the OLM, heterotypic junctions contain proteins from both adherent and tight junctions. Their structure suggests that tight junctions may exist in the OLM. Occludin is present in the OLM of the rat and monkey retina and it is decreased in diabetes. The OLM should be considered as part of the retinal barrier that can be disrupted in pathological conditions contributing to fluid accumulation in the macula.
Resumo:
Acid-sensing ion channels (ASICs) are neuronal Na(+) channels that belong to the epithelial Na(+) channel/degenerin family. ASICs are transiently activated by a rapid drop in extracellular pH. Conditions of low extracellular pH, such as ischemia and inflammation in which ASICs are thought to be active, are accompanied by increased protease activity. We show here that serine proteases modulate the function of ASIC1a and ASIC1b but not of ASIC2a and ASIC3. We show that protease exposure shifts the pH dependence of ASIC1a activation and steady-state inactivation to more acidic pH. As a consequence, protease exposure leads to a decrease in current response if ASIC1a is activated by a pH drop from pH 7.4. If, however, acidification occurs from a basal pH of approximately 7, protease-exposed ASIC1a shows higher activity than untreated ASIC1a. We provide evidence that this bi-directional regulation of ASIC1a function also occurs in neurons. Thus, we have identified a mechanism that modulates ASIC function and may allow ASIC1a to adapt its gating to situations of persistent extracellular acidification.