988 resultados para SEDIMENT SOURCES AND SINKS
Resumo:
To date, work on the Great Bahama Bank's western, leeward margin has centred chiefly on seismic-scale expressions of carbonate sequences and systems tracts. However, periplatform, slope sediments also exhibit very well developed cyclicity on scales of decimetres to several metres. It is these small-scale, high-frequency cycles within the larger-scale facies successions of the Quaternary which form the main topic of this paper. Previous studies have shown that the small-scale cycles correlate to the orbitally forced, high-frequency sea-level changes. Therefore these cycles should indicate how sea level has affected the slope development and thus platform-margin evolution during this period. Through detailed, high-resolution sequence stratigraphy of the Great Bahama Bank's leeward margin, obtained via delta18O isotope and mineralogical (XRD) analyses, confined by U/Th dating and nannofossil bioevents, a greater understanding of the bedding geometries within the Pleistocene-Holocene seismic sequences and clues as to the nature of the slope development has been achieved. The high-resolution seismic profiles indicate that since the Plio-Pleistocene change in geometry, in which the Great Bahama Bank developed into a rimmed platform, continued steepening and subsequent progradation of the leeward margin has typified slope development during the Quaternary, which is described as an accretionary slope. However, on the basis of our observations we conclude that only the early to lower middle Pleistocene section (isotope stages 45-20) and the Holocene (isotope stage 1) of the leeward margin is accretionary. This indicates that a degree of erosion and/or by-passing has occurred on the leeward margin since the lower middle Pleistocene (isotope stage 19). During the first part of this period (isotope stages 19-12) erosion and/or by-passing occurred in the middle to lower slope regions and toe-of-slope. By the end of the upper middle to late Pleistocene phase (isotope stages 11-2) erosion also occurred on the upper slope. This erosion by currents at the toe-of-slope and oversteepening of the upper and middle slopes have led to back-cutting upslope and resulted in the progressive retreat of the toe-of-slope towards the platform to the east. However, the rise in sea level since the Last Glacial Maximum to its present-day level has allowed high productivity on the platform top during the Holocene and the deposition of a thick sediment wedge on the slope and sedimentation across the entire leeward flanks. This has led to the redevelopment of an accretionary slope and continued westward progradation of the Great Bahama Bank's western, leeward margin.
Resumo:
Sedimentary particle fluxes in the Kara Sea and in the Ob and Yenisey estuaries were first estimated and particulate matter composition was studied in September 1993 during Cruise 49 of R/V Dmitry Mendeleev. Twenty three bottom stations with sediment traps were deployed, and samples were collected from 13 stations. Particle fluxes ranged from 9.0 to 62.6 mg/m**2/day to the north of the Ob and Yenisey estuaries and were 18.7 to 62.0 mg/m**2/day in the southwestern part of the Kara Sea. Fluxes were up to 1321 mg/m**2/day in the Ob estuary and up to 22156 mg/m**2/day in the Yenisey estuary. Organic matter fluxes were estimated as 0.71-3.29, 4.28-9.04, 26.7, and 368 mg/m**2/day, respectively. Particulate matter is largely represented by pellets of planktic Crustacea and by "sea snow" flakes mainly composed of diatoms. Rapidly settling particles are extensively inhabited by bacterial flora.
Resumo:
The combination of multiple sediment sources and varying rates of sediment accumulation in the Celebes and Sulu seas have had significant impact on the processes of diagenesis, mineralization, and pore-fluid flow. Isotopic and mass-balance calculations help elucidate the various reactions taking place in these western Pacific basins, where ash alteration and basalt-seawater interactions are superimposed on the effects of sulfate oxidation of organic carbon and biogenic methane and of dolomitization of biogenic carbonates. Based on the shape of the calcium and magnesium depth profiles, two major reactive zones have been identified. The first is located near the zone of sulfate depletion and is characterized by carbonate recrystallization, dolomitization and ash alteration reactions at both Ocean Drilling Program Sites 767 and 768. The second reactive zone corresponds to the bottom of the sedimentary sequence and is characterized by alteration reactions in the basement (Site 767) and in the pyroclastic deposits beneath the sediment column (Site 768).
Resumo:
Centennial-to-millennial scale records from IODP Site U1387, drilled during IODP Expedition 339 into the Faro Drift at 558 m water depth, now allow evaluating the climatic history of the upper core of the Mediterranean Outflow (MOW) and of the surface waters in the northern Gulf of Cadiz during the early Pleistocene. This study focuses on the period from Marine Isotope Stage (MIS) 29 to 34, i.e. the interval surrounding extreme interglacial MIS 31. Conditions in the upper MOW reflect obliquity, precession and millennial-scale variations. The benthic d18O signal follows obliquity with the exception of an additional, smaller d18O peak that marks the MIS 32/31 transition. Insolation maxima (precession minima) led to poor ventilation and a sluggish upper MOW core, whereas insolation minima were associated with enhanced ventilation and often also increased bottom current velocity. Millennial-scale periods of colder sea-surface temperatures (SST) were associated with short-term maxima in flow velocity and better ventilation, reminiscent of conditions known from MIS 3. A prominent contourite layer, coinciding with insolation cycle 100, was formed during MIS 31 and represents one of the few contourites developing within an interglacial period. MIS 31 surface water conditions were characterized by an extended period (1065-1091 ka) of warm SST, but SST were not much warmer than during MIS 33. Interglacial to glacial transitions experienced 2 to 3 stadial/interstadial cycles, just like their mid-to-late Pleistocene counterparts. Glacial MIS 30 and 32 recorded periods of extremely cold (< 12°C) SST that in their climatic impact were comparable to the Heinrich events of the mid and late Pleistocene. Glacial MIS 34, on the other hand, was a relative warm glacial period off southern Portugal. Overall, surface water and MOW conditions at Site U1387 show strong congruence with Mediterranean climate, whereas millennial-scale variations are closely linked to North Atlantic circulation changes.
Resumo:
Major ice sheets were permanently established on Antarctica approximately 34 million years ago, close to the Eocene/ Oligocene boundary, at the same time as a permanent deepening of the calcite compensation depth in the world's oceans. Until recently, it was thought that Northern Hemisphere glaciation began much later, between 11 and 5million years ago. This view has been challenged, however, by records of ice rafting at high northern latitudes during the Eocene epoch and by estimates of global ice volume that exceed the storage capacity of Antarctica at the same time as a temporary deepening of the calcite compensation depth 41.6 million years ago. Here we test the hypothesis that large ice sheets were present in both hemispheres 41.6 million years ago using marine sediment records of oxygen and carbon isotope values and of calcium carbonate content from the equatorial Atlantic Ocean. These records allow, at most, an ice budget that can easily be accommodated on Antarctica, indicating that large ice sheets were not present in the Northern Hemisphere. The records also reveal a brief interval shortly before the temporary deepening of the calcite compensation depth during which the calcite compensation depth shoaled, ocean temperatures increased and carbon isotope values decreased in the equatorial Atlantic. The nature of these changes around 41.6 million years ago implies common links, in terms of carbon cycling, with events at the Eocene/Oligocene boundary and with the 'hyperthermals' of the Early Eocene climate optimum. Our findings help to resolve the apparent discrepancy between the geological records of Northern Hemisphere glaciation and model results that indicate that the threshold for continental glaciation was crossed earlier in the Southern Hemisphere than in the Northern Hemisphere.
Resumo:
Antarctic ice-free areas contain lakes and ponds that have interesting limnological features and are of wide global significance as early warning indicators of climatic and environmental change. However, most limnological and paleolimnological studies in continental Antarctica are limited to certain regions. There are several ice-free areas in Victoria Land that have not yet been studied well. There is therefore a need to extend limnological studies in space and time to understand how different geological and climatic features affect the composition and biological activity of freshwater communities. With the aim of contributing to a better limnological characterization of Victoria Land, this paper reports data on sedimentary pigments (used to identify the main algal taxa) obtained through a methodology that is more sensitive and selective than that of previous studies. Analyses were extended to 48 water bodies in ice-free areas with differing lithology, latitude, and altitude, and with different morphometry and physical, chemical, and biological characteristics in order to identify environmental factors affecting the distribution and composition of freshwater autotrophic communities. A wider knowledge of lakes in a limnologically important region of Antarctica was obtained. Cyanophyta was found to be the most important algal group, followed by Chlorophyta and Bacillariophyta, whereas latitude and altitude are the main factors affecting pigment distribution.
Resumo:
Long chain 1,13- and 1,15-alkyl diols form the base of a number of recently proposed proxies used for climate reconstruction. However, the sources of these lipids and environmental controls on their distribution are still poorly constrained. We have analyzed the long chain alkyl diol (LCD) composition of cultures of ten eustigmatophyte species, with three species from different families grown at various temperatures, to identify the effect of species composition and growth temperature on the LCD distribution. The results were compared with the LCD distribution of sixty-two lake surface sediments, and with previously reported LCD distributions from marine environments. The different families within the Eustigmatophyceae show distinct LCD patterns, with the freshwater family Eustigmataceae most closely resembling LCD distributions in both marine and lake environments. Unlike the other two eustigmatophyte families analyzed (Monodopsidaceae and Goniochloridaceae), C28 and C30 1,13-alkyl diols and C30 and C32 1,15-alkyl diols are all relatively abundant in the family Eustigmataceae, while the mono-unsaturated C32 1,15-alkyl diol was below detection limit. In contrast to the marine environment, LCD distributions in lakes did not show a clear relationship with temperature. The Long chain Diol Index (LDI), a proxy previously proposed for sea surface temperature reconstruction, showed a relatively weak correlation (R2 = 0.33) with mean annual air temperature used as an approximation for annual mean surface temperature of the lakes. A much-improved correlation (R2 = 0.74, p-value<0.001) was observed applying a multiple linear regression analysis between LCD distributions and lake temperatures reconstructed using branched tetraether lipid distributions. The obtained regression model provides good estimates of temperatures for cultures of the family Eustigmataceae, suggesting that algae belonging to this family have an important role as a source for LCDs in lacustrine environments, or, alternatively, that the main sources of LCDs are similarly affected by temperature as the Eustigmataceae. The results suggest that LCDs may have the potential to be applicable as a palaeotemperature proxy for lacustrine environments, although further calibration work is still required.
Resumo:
Digitized records of optical desnity in many North Atlantic cores exihibt rapid changes from lighter to darker extrems, typically within less than 200 years, at the 5d/5e, 5b/5c and 4/5 boundaries. In cores from DSDP site 609 the changes from lighter to darker color coincide with increasing in relative abundance of Neogloboquadrina pachyderma (l.c.), with increases in abundances of lithic grains and with decreasing in carbonate content. The rapid changes to dark color, therefore, are climate-driven and correspond to a lowering of seas surface temperatures and to increases in amounts of ice rafted debris relative to biogenic carbonate. At the 5d&4c boundary, delta18O in N. pachyderma (l.c.) increases abruptly with the change to darker sediments as expected for cooler sea surface temperatures. At the 4/5 boundary, however, delta18O decreases with the change to darker sediment and cooler sea surface temperatures, suggesting that a layer of fresh surface water was present in the North Atlantic at that time.
Resumo:
Results of radiocarbon dating of 23 cores (81 determinations) collected in the Red Sea rift zone at 8°N are presented. All of the main tectonic structures were dated: the upper and lower tectonic benches, the salt scarp, and the axial zone. Sediments in the upper tectonic bench exhibit normal sedimentation, while all other structures, which have highly dissected relief, show extensive re-deposition or non-accumulation of sediments. Sedimentation rate in Holocene was from two to three times lower than in Late Würm.
Resumo:
Although ocean acidification is expected to reduce carbonate saturation and yield negative impacts on open-ocean calcifying organisms in the near future, acidification in coastal ecosystems may already be affecting these organisms. Few studies have addressed the effects of sedimentary saturation state on benthic invertebrates. Here, we investigate whether sedimentary aragonite saturation (Omega aragonite) and proton concentration ([H+]) affect burrowing and dispersal rates of juvenile soft-shell clams (Mya arenaria) in a laboratory flume experiment. Two size classes of juvenile clams (0.5-1.5 mm and 1.51-2.5 mm) were subjected to a range of sediment Omega aragonite and [H+] conditions within the range of typical estuarine sediments (Omega aragonite 0.21-1.87; pH 6.8-7.8; [H+] 1.58 × 10**-8-1.51 × 10**- 7) by the addition of varying amounts of CO2, while overlying water pH was kept constant ~ 7.8 (Omega aragonite ~ 1.97). There was a significant positive relationship between the percent of juvenile clams burrowed in still water and Omega aragonite and a significant negative relationship between burrowing and [H+]. Clams were subsequently exposed to one of two different flow conditions (flume; 11 cm/s and 23 cm/s) and there was a significant negative relationship between Omega aragonite and dispersal, regardless of clam size class and flow speed. No apparent relationship was evident between dispersal and [H+]. The results of this study suggest that sediment acidification may play an important role in soft-shell clam recruitment and dispersal. When assessing the impacts of open-ocean and coastal acidification on infaunal organisms, future studies should address the effects of sediment acidification to adequately understand how calcifying organisms may be affected by shifting pH conditions.