905 resultados para Running Kinematics
Resumo:
Objectives
Barefoot running describes when individuals run without footwear. Minimalist running utilizes shoes aimed to mimic being barefoot. Although these forms of running have become increasingly popular, we still know little about how recreational runners perceive them.
Design
In-depth interviews with eight recreational runners were used to gather information about their running experiences with a focus on barefoot and minimalist running.
Methods
Interviews were analysed using a latent level thematic analysis to identify and interpret themes within the data.
Results
Although participants considered barefoot running to be ‘natural’, they also considered it to be extreme. Minimalist running did not produce such aversive reactions. ‘Support’ reassured against concerns and was seen as central in protecting vulnerable body parts and reducing impact forces, but lacked a common or clear definition. A preference for practical over academic knowledge was found. Anecdotal information was generally trusted, as were running stores with gait assessment, but not health professionals.
Conclusion
People often have inconsistent ideas about barefoot and minimalist running, which are often formed by potentially biased sources, which may lead people to make poor decisions about barefoot and minimalist running. It is important to provide high-quality information to enable better decisions to be made about barefoot and minimalist running.
Statement of contribution
What is already known on this subject?
There is no known work on the psychology behind barefoot and minimalist running. We believe our study is the first qualitative study to have investigated views of this increasingly popular form of running.
What does this study add?
The results suggest that although barefoot running is considered ‘natural’, it is also considered ‘extreme’. Minimalist running, however, did not receive such aversive reactions.
‘Support’ was a common concern among runners. Although ‘support’ reassured against concerns and was seen as central in protecting vulnerable body parts and reducing impact forces, it lacked a common or clear definition.
A preference for practical over academic knowledge was found. Anecdotal information was generally trusted, as were running stores with gait assessment, but not health professionals.
Puzzle game online running on a bidirectional communication framework based on Node.js and Socket.io
Resumo:
Máster Universitario en Ingeniería Informática (Escuela Universitaria de Informática)
Resumo:
The purpose was to determine running economy and lactate threshold among a selection of male elite football players with high and low aerobic power. Forty male elite football players from the highest Swedish division (“Allsvenskan”) participated in the study. In a test of running economy (RE) and blood lactate accumulation the participants ran four minutes each at 10, 12, 14, and 16 km•h-1 at horizontal level with one minute rest in between each four minutes interval. After the last sub-maximal speed level the participants got two minutes of rest before test of maximal oxygen uptake (VO2max). Players that had a maximal oxygen uptake lower than the average for the total population of 57.0 mL O2•kg-1•minute-1 were assigned to the low aerobic power group (LAP) (n=17). The players that had a VO2max equal to or higher than 57.0 mL O2•kg-1•minute-1 were selected for the high aerobic power group (HAP) (n=23). The VO2max was significantly different between the HAP and LAP group. The average RE, measured as oxygen uptake at 12, 14 and 16km•h-1 was significantly lower but the blood lactate concentration was significantly higher at 14 and 16 km•h-1 for theLAP group compared with the HAP group.
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
Aim. Circumcision is the most common procedure for phimosis. In recent years, the value of foreskin properties as well as aesthetic reasons determined to other operations preserving the foreskin. We report 5-years experience with a technique that preserve the physical foreskin appearance intact. Patients and methods. Fifty-two patients, eligible to undergo phimosis surgery, underwent prepuce-sparing plasty and simple running suture. Evaluation of results was made with photos comparative and verified by using presence/absence of recurrence, scarring evaluation, and VAS for patient satisfaction. Results. Forty-eight patients reported no complications. There were no cases of bleeding, infection, pathological scarring, phimosis recurrence. The scar showed a good pliability and a thin thickness. Patient satisfaction was high. Conclusions. The association of prepuce-sparing plasty and simple running suture highlighted an effective and easy method for the correction of acquired phimosis in adult patients, with excellent functional and cosmetic results.
Resumo:
Resumo:
This thesis is in two parts: a creative work of fiction and a critical reflection on writing from an identity of expatriation. The creative work, a novel entitled Running on Rooftops, revolves around a fictitious community of expatriates living and working in China. As a new college graduate, Anne Henry, the novel’s protagonist and narrator, decides to spend a year teaching English in China. Twelve years later, though still unsure of how to make sense of the chain of events and encounters that left her with an X-shaped scar on her knee, she nevertheless tells the story, revealing how “just a year” can be anything but. The critical reflection, entitled Writing on Rooftops, explores the nature of expatriation as it relates to identity and writing, specifically in how West-meets-East encounters and attitudes are depicted in literature. In it, I examine the challenges and benefits of writing from an identity and mindset of expatriation as illustrated in the works of Western writers who themselves experienced and wrote from viewpoints of expatriation, particularly those Western writers who wrote of expatriation in China and Southeast Asia. The primary question addressed is how expatriation influences perception and how those perceptions among Western foreigners in China and Southeast Asia have been and can be reflected in literature. In the end, I argue that expatriation can be a valuable viewpoint to write from, offering new ways of seeing and describing our world, ourselves and the connections between the two.
Resumo:
The aim of study was to examine the effects of the world's most challenging mountain ultramarathon (Tor des Geants [TdG]) on running mechanics. Mechanical measurements were undertaken in male runners (n = 16) and a control group (n = 8) before (PRE), during (MID), and after (POST) the TdG. Contact (tc) and aerial (ta) times, step frequency (f), and running velocity (v) were sampled. Spring-mass parameters of peak vertical ground-reaction force (Fmax), vertical downward displacement of the center of mass (Deltaz), leg-length change (DeltaL), and vertical (kvert) and leg (kleg) stiffness were computed. Significant decreases were observed in runners between PRE and MID for ta (P < .001), Fmax (P < .001), Deltaz (P < .05), and kleg (P < .01). In contrast, f significantly increased (P < .05) between PRE and MID-TdG. No further changes were observed at POST for any of those variables, with the exception of kleg, which went back to PRE. During the TdG, experienced runners modified their running pattern and spring-mass behavior mainly during the first half. The current results suggest that these mechanical changes aim at minimizing the pain occurring in lower limbs mainly during the eccentric phases. One cannot rule out that this switch to a "safer" technique may also aim to anticipate further damages.
Resumo:
Robot-Assisted Rehabilitation (RAR) is relevant for treating patients affected by nervous system injuries (e.g., stroke and spinal cord injury) -- The accurate estimation of the joint angles of the patient limbs in RAR is critical to assess the patient improvement -- The economical prevalent method to estimate the patient posture in Exoskeleton-based RAR is to approximate the limb joint angles with the ones of the Exoskeleton -- This approximation is rough since their kinematic structures differ -- Motion capture systems (MOCAPs) can improve the estimations, at the expenses of a considerable overload of the therapy setup -- Alternatively, the Extended Inverse Kinematics Posture Estimation (EIKPE) computational method models the limb and Exoskeleton as differing parallel kinematic chains -- EIKPE has been tested with single DOFmovements of the wrist and elbow joints -- This paper presents the assessment of EIKPEwith elbow-shoulder compoundmovements (i.e., object prehension) -- Ground-truth for estimation assessment is obtained from an optical MOCAP (not intended for the treatment stage) -- The assessment shows EIKPE rendering a good numerical approximation of the actual posture during the compoundmovement execution, especially for the shoulder joint angles -- This work opens the horizon for clinical studies with patient groups, Exoskeleton models, and movements types --
Resumo:
Resumo:
This thesis studies mobile robotic manipulators, where one or more robot manipulator arms are integrated with a mobile robotic base. The base could be a wheeled or tracked vehicle, or it might be a multi-limbed locomotor. As robots are increasingly deployed in complex and unstructured environments, the need for mobile manipulation increases. Mobile robotic assistants have the potential to revolutionize human lives in a large variety of settings including home, industrial and outdoor environments.
Mobile Manipulation is the use or study of such mobile robots as they interact with physical objects in their environment. As compared to fixed base manipulators, mobile manipulators can take advantage of the base mechanism’s added degrees of freedom in the task planning and execution process. But their use also poses new problems in the analysis and control of base system stability, and the planning of coordinated base and arm motions. For mobile manipulators to be successfully and efficiently used, a thorough understanding of their kinematics, stability, and capabilities is required. Moreover, because mobile manipulators typically possess a large number of actuators, new and efficient methods to coordinate their large numbers of degrees of freedom are needed to make them practically deployable. This thesis develops new kinematic and stability analyses of mobile manipulation, and new algorithms to efficiently plan their motions.
I first develop detailed and novel descriptions of the kinematics governing the operation of multi- limbed legged robots working in the presence of gravity, and whose limbs may also be simultaneously used for manipulation. The fundamental stance constraint that arises from simple assumptions about friction and the ground contact and feasible motions is derived. Thereafter, a local relationship between joint motions and motions of the robot abdomen and reaching limbs is developed. Baseeon these relationships, one can define and analyze local kinematic qualities including limberness, wrench resistance and local dexterity. While previous researchers have noted the similarity between multi- fingered grasping and quasi-static manipulation, this thesis makes explicit connections between these two problems.
The kinematic expressions form the basis for a local motion planning problem that that determines the joint motions to achieve several simultaneous objectives while maintaining stance stability in the presence of gravity. This problem is translated into a convex quadratic program entitled the balanced priority solution, whose existence and uniqueness properties are developed. This problem is related in spirit to the classical redundancy resoxlution and task-priority approaches. With some simple modifications, this local planning and optimization problem can be extended to handle a large variety of goals and constraints that arise in mobile-manipulation. This local planning problem applies readily to other mobile bases including wheeled and articulated bases. This thesis describes the use of the local planning techniques to generate global plans, as well as for use within a feedback loop. The work in this thesis is motivated in part by many practical tasks involving the Surrogate and RoboSimian robots at NASA/JPL, and a large number of examples involving the two robots, both real and simulated, are provided.
Finally, this thesis provides an analysis of simultaneous force and motion control for multi- limbed legged robots. Starting with a classical linear stiffness relationship, an analysis of this problem for multiple point contacts is described. The local velocity planning problem is extended to include generation of forces, as well as to maintain stability using force-feedback. This thesis also provides a concise, novel definition of static stability, and proves some conditions under which it is satisfied.