897 resultados para Robotics Education, Distributed Control, Automonous Robots, Programming, Computer Architecture


Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this paper, we analyse the ability of P-NET [1] fieldbus to cope with the timing requirements of a Distributed Computer Control System (DCCS), where messages associated to discrete events should be made available within a maximum bound time. The main objective of this work is to analyse how the network access and queueing delays, imposed by P-NET’s virtual token Medium Access Control (MAC) mechanism, affect the realtime behaviour of the supported DCCS.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper presents the development of a fish-like robot called Bro-Fish. Bro-Fish aims to be an educational toy dedicated to teaching mechanics, programming and the physics of floating objects to youngsters. The underlying intention is to awaken the interest of children for technology, especially biomimetic (biologically inspired) approaches, in order to promote sustainability and raise the level of ecological awareness. The main focus of this project was to create a robot with carangiform locomotion and controllable swimming, providing the opportunity to customize parts and experiment with the physics of floating objects. Therefore, the locomotion principles of fishes and mechanisms developed in related projects were analysed. Inspired by this background knowledge, a prototype was designed and implemented. The main achievement is the new tail mechanism that propels the robot. The tail resembles the undulation motion of fish bodies and is actuated in an innovative way, triggered by an elegant movement of a rotating helicoidal. First experimental tests revealed the potential of the proposed methodology to effectively generate forward propulsion.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Teaching robotics to students at the beginning of their studies has become a huge challenge. Simulation environments can be an effective solution to that challenge where students can interact with simulated robots and have the first contact with robotic constraints. From our previous experience with simulation environments it was possible to observe that students with lower background knowledge in robotics where able to deal with a limited number of constraints, implement a simulated robotic platform and study several sensors. The question is: after this first phase what should be the best approach? Should the student start developing their own hardware? Hardware development is a very important part of an engineer's education but it can also be a difficult phase that could lead to discouragement and loss of motivation in some students. Considering the previous constraints and first year engineering students’ high abandonment rate it is important to develop teaching strategies to deal with this problem in a feasible way. The solution that we propose is the integration of a low-cost standard robotic platform WowWee Rovio as an intermediate solution between the simulation phase and the stage where the students can develop their own robots. This approach will allow the students to keep working in robotic areas such as: cooperative behaviour, perception, navigation and data fusion. The propose approach proved to be a motivation step not only for the students but also for the teachers. Students and teachers were able to reach an agreement between the level of demand imposed by the teachers and satisfaction/motivation of the students.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this paper we introduce a formation control loop that maximizes the performance of the cooperative perception of a tracked target by a team of mobile robots, while maintaining the team in formation, with a dynamically adjustable geometry which is a function of the quality of the target perception by the team. In the formation control loop, the controller module is a distributed non-linear model predictive controller and the estimator module fuses local estimates of the target state, obtained by a particle filter at each robot. The two modules and their integration are described in detail, including a real-time database associated to a wireless communication protocol that facilitates the exchange of state data while reducing collisions among team members. Simulation and real robot results for indoor and outdoor teams of different robots are presented. The results highlight how our method successfully enables a team of homogeneous robots to minimize the total uncertainty of the tracked target cooperative estimate while complying with performance criteria such as keeping a pre-set distance between the teammates and the target, avoiding collisions with teammates and/or surrounding obstacles.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Informática

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Series: "Advances in intelligent systems and computing , ISSN 2194-5357, vol. 417"

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper presents the use of a mobile robot platform as an innovative educational tool in order to promote and integrate different curriculum knowledge. Hence, it is presented the acquired experience within a summer course named ldquoapplied mobile roboticsrdquo. The main aim of the course is to integrate different subjects as electronics, programming, architecture, perception systems, communications, control and trajectory planning by using the educational open mobile robot platform PRIM. The summer course is addressed to a wide range of student profiles. However, it is of special interests to the students of electrical and computer engineering around their final academic year. The summer course consists of the theoretical and laboratory sessions, related to the following topics: design & programming of electronic devices, modelling and control systems, trajectory planning and control, and computer vision systems. Therefore, the clues for achieving a renewed path of progress in robotics are the integration of several knowledgeable fields, such as computing, communications, and control sciences, in order to perform a higher level reasoning and use decision tools with strong theoretical base

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper presents the distributed environment for virtual and/or real experiments for underwater robots (DEVRE). This environment is composed of a set of processes running on a local area network composed of three sites: 1) the onboard AUV computer; 2) a surface computer used as human-machine interface (HMI); and 3) a computer used for simulating the vehicle dynamics and representing the virtual world. The HMI can be transparently linked to the real sensors and actuators dealing with a real mission. It can also be linked with virtual sensors and virtual actuators, dealing with a virtual mission. The aim of DEVRE is to assist engineers during the software development and testing in the lab prior to real experiments

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In the future, robots will enter our everyday lives to help us with various tasks.For a complete integration and cooperation with humans, these robots needto be able to acquire new skills. Sensor capabilities for navigation in real humanenvironments and intelligent interaction with humans are some of the keychallenges.Learning by demonstration systems focus on the problem of human robotinteraction, and let the human teach the robot by demonstrating the task usinghis own hands. In this thesis, we present a solution to a subproblem within thelearning by demonstration field, namely human-robot grasp mapping. Robotgrasping of objects in a home or office environment is challenging problem.Programming by demonstration systems, can give important skills for aidingthe robot in the grasping task.The thesis presents two techniques for human-robot grasp mapping, directrobot imitation from human demonstrator and intelligent grasp imitation. Inintelligent grasp mapping, the robot takes the size and shape of the object intoconsideration, while for direct mapping, only the pose of the human hand isavailable.These are evaluated in a simulated environment on several robot platforms.The results show that knowing the object shape and size for a grasping taskimproves the robot precision and performance

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Kustannuspaineet, tuotteiden laatuvaatimukset ja lisääntyvässä määrin myös ammattitaitoisen työvoiman pula lisäävät robotisoinnin käyttötarvetta hitsauksessa. Tämä työ on tehty edellä mainituista lähtökohdista ja käsittelee robottihitsausjärjestelmän suunnitteluprojektia, joustavaa hitsausautomaatiota ja robotiikan soveltamista. Näkökohtana on Savonia-ammattikorkeakoulun sekä Pohjois-Savon alueen yritysten tutkimus-, kehitys- ja koulutustoiminnan tarpeet. Joustavuus on hitsausjärjestelmän päätavoite, jolla pyritään vastaamaan asiakasohjautuvan yksittäis- ja piensarjatuotannon haasteisiin. Ratkaisua yksittäis- ja piensarjatuotteiden kokonaistaloudelliseen hitsaukseen on haettu hitsausrobotin rinnalle lisätyllä apurobotilla, jonka päätehtävä on kappaleenkäsittely, mutta sitä voidaan käyttää myös mm. robotisoituun leikkauksen ja särmäykseen. Tavallisuudesta poikkeavaa järjestelmäratkaisua on perusteltu sillä, että ohjaus- ja ohjelmointitekniikan sekä kehittyneen anturoinnin myötä on robottien käytettävyys parantunut ja aiempaa haasteellisempien robottijärjestelmien toteuttaminen on tullut näin mahdolliseksi. Lisäksi virtuaalimallinnus, simulointi ja etäohjelmointi ovat työkaluja, joita voidaan käyttää mm. tuotannon laadun ja tehokkuuden parantamiseen. Työssä esitetty robottiaseman suunnittelu alkaa järjestelmän määrittelystä, vaatimuslistan laadinnasta sekä visioinnista ja päättyy kolmen järjestelmävaihtoehdon vertailuun. Esitetyillä järjestelmävaihtoehdoilla on haettu mahdollisuutta yhdistää yleensä erillisinä toteutettuja työvaiheita yhteiseen soluun. Tuotannon joustavuus on ollut tuotantokapasiteettia tärkeämpi laitteistokokoonpanon valintaperuste.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The main objective of this master's thesis is to study robot programming using simulation software, and also how to embed the simulation software into company's own robot controlling software. The further goal is to study a new communication interface to the assembly line's components -more precisely how to connect the robot cell into this new communication system. Conveyor lines are already available where the conveyors use the new communication standard. The robot cell is not yet capable of communicating with to other devices using the new communication protocols. The main problem among robot manufacturers is that they all have their own communication systems and programming languages. There has not been any common programming language to program all the different robot manufacturers robots, until the RRS (Realistic Robot Simulation) standards were developed. The RRS - II makes it possible to create the robot programs in the simulation software and it gives a common user interface for different robot manufacturers robots. This thesis will present the RRS - II standard and the robot manufacturers situation for the RRS - II support. Thesis presents how the simulation software can be embedded into company's own robot controlling software and also how the robot cell can be connected to the CAMX (Computer Aided Manufacturing using XML) communication system.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Durante toda la evolución de la tecnología, se han empleado aparatos interconexionados por cables. Los cables limitan la libertad de movimiento del usuario y pueden captar interferencias entre ellos si la red de cableado es elevada. Mientras avanzaba la tecnología inalámbrica, se ha ido adaptando al equipamiento electrónico a la vez que se iban haciendo cada vez más pequeños. Por esto, se impone la necesidad de utilizarlos como controles a distancia sin el empleo de cables debido a los inconvenientes que estos conllevan. El presente trabajo, pretende unificar tres tecnologías que pueden tener en el futuro una gran afinidad. · Dispositivos basados en el sistema Android. Desde sus inicios, han tenido una evolución meteórica. Se han ido haciendo cada vez más rápidos y mejores. · Sistemas inalámbricos. Los sistemas wifi o bluetooth, se han ido incorporando a nuestras vidas cada vez más y están prácticamente en cualquier aparato. · Robótica. Cualquier proceso de producción incorpora un robot. Son necesarios para hacer muchos trabajos que, aunque el hombre lo puede realizar, un robot reduce los tiempos y la peligrosidad de los procesos. Aunque las dos primeras tecnologías van unidas, ¿quién no tiene un teléfono con conexión wifi y bluetooth?, pocos diseños aúnan estos campos con la Robótica. El objetivo final de este trabajo es realizar una aplicación en Android para el control remoto de un robot, empleando el sistema de comunicación inalámbrico. La aplicación desarrollada, permite controlar el robot a conveniencia del usuario en un entorno táctil/teledirigido. Gracias a la utilización de simulador en ambos lenguajes (RAPID y Android), ha sido posible realizar la programación sin tener que estar presente ante el robot objeto de este trabajo. A través de su progreso, se ha ido evolucionando en la cantidad de datos enviados al robot y complejidad en su procesamiento, a la vez que se ha mejorado en la estética de la aplicación. Finalmente se usó la aplicación desarrollada con el robot, consiguiendo con éxito que realizara los movimientos que eran enviados con la tablet programada.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Industrial applications demand that robots operate in agreement with the position and orientation of their end effector. It is necessary to solve the kinematics inverse problem. This allows the displacement of the joints of the manipulator to be determined, to accomplish a given objective. Complete studies of dynamical control of joint robotics are also necessary. Initially, this article focuses on the implementation of numerical algorithms for the solution of the kinematics inverse problem and the modeling and simulation of dynamic systems. This is done using real time implementation. The modeling and simulation of dynamic systems are performed emphasizing off-line programming. In sequence, a complete study of the control strategies is carried out through the study of several elements of a robotic joint, such as: DC motor, inertia, and gearbox. Finally a trajectory generator, used as input for a generic group of joints, is developed and a proposal of the controller's implementation of joints, using EPLD development system, is presented.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The quantitative component of this study examined the effect of computerassisted instruction (CAI) on science problem-solving performance, as well as the significance of logical reasoning ability to this relationship. I had the dual role of researcher and teacher, as I conducted the study with 84 grade seven students to whom I simultaneously taught science on a rotary-basis. A two-treatment research design using this sample of convenience allowed for a comparison between the problem-solving performance of a CAI treatment group (n = 46) versus a laboratory-based control group (n = 38). Science problem-solving performance was measured by a pretest and posttest that I developed for this study. The validity of these tests was addressed through critical discussions with faculty members, colleagues, as well as through feedback gained in a pilot study. High reliability was revealed between the pretest and the posttest; in this way, students who tended to score high on the pretest also tended to score high on the posttest. Interrater reliability was found to be high for 30 randomly-selected test responses which were scored independently by two raters (i.e., myself and my faculty advisor). Results indicated that the form of computer-assisted instruction (CAI) used in this study did not significantly improve students' problem-solving performance. Logical reasoning ability was measured by an abbreviated version of the Group Assessment of Lx)gical Thinking (GALT). Logical reasoning ability was found to be correlated to problem-solving performance in that, students with high logical reasoning ability tended to do better on the problem-solving tests and vice versa. However, no significant difference was observed in problem-solving improvement, in the laboratory-based instruction group versus the CAI group, for students varying in level of logical reasoning ability.Insignificant trends were noted in results obtained from students of high logical reasoning ability, but require further study. It was acknowledged that conclusions drawn from the quantitative component of this study were limited, as further modifications of the tests were recommended, as well as the use of a larger sample size. The purpose of the qualitative component of the study was to provide a detailed description ofmy thesis research process as a Brock University Master of Education student. My research journal notes served as the data base for open coding analysis. This analysis revealed six main themes which best described my research experience: research interests, practical considerations, research design, research analysis, development of the problem-solving tests, and scoring scheme development. These important areas ofmy thesis research experience were recounted in the form of a personal narrative. It was noted that the research process was a form of problem solving in itself, as I made use of several problem-solving strategies to achieve desired thesis outcomes.