916 resultados para Robinson, John
Resumo:
This article provides a discussion of the political thinking of John P. Mackintosh (1929–1978) around the debate over Scottish devolution, and the constitutional reform of the UK, during the 1960s and 1970s. The article explores Mackintosh's ‘Union State’ vision of the UK and connects this to his interest in, and study of, the Northern Ireland experience of devolution from 1921 to 1972. It also considers the significance of Mackintosh's confrontations with Scottish nationalism and suggests that his unionism was representative of a more authentic and rooted tradition than is usually acknowledged. The article offers an evaluation of Mackintosh's legacy and considers the extent to which the questions he posed, and the lines of argument he advanced, have retained their relevance and interest in the new context of partial devolution in the UK, and in the current period of renewed constitutional speculation and debate over the future of the Union and the UK.
Resumo:
This edition of Milton’s Epistolarum Familiarium Liber Unus and of his Uncollected Letters, will appear as 672 pp. of The Complete Works of John Milton Volume XI, eds. Gordon Campbell and Edward Jones (Oxford University Press, forthcoming 2016). A diplomatic Latin text and a new facing English translation are complemented by a detailed Introduction and commentary that situate Milton’s Latin letters in relation to the classical, pedagogical and essentially humanist contexts at the heart of their composition. Now the art of epistolography advocated and exemplified by Cicero and Quintilian and embraced by Renaissance pedagogical manuals is read through a humanist filter whereby, via the precedent (and very title) of Epistolae Familiares, the Miltonic Liber is shown to engage with a neo-Latin re-invention of the classical epistola that had come to birth in quattrocento Italy in the letters of Petrarch and his contemporaries. At the same time the Epistolae are seen as offering fresh insight into Milton’s views on education, philology, his relations with Italian literati, his blindness, the poetic dimension of his Latin prose, and especially his verbal ingenuity as the ‘words’ of Latin ‘Letters’ become a self-conscious showcasing of etymological punning on the ‘letters’ of Latin ‘words’. The edition also announces several new discoveries, most notably its uncovering and collation of a manuscript of Henry Oldenburg’s transcription (in his Liber Epistolaris held in Royal Society, London) of Milton’s Ep. Fam. 25 (to Richard Jones). Oldenburg’s transcription (from the original sent to his pupil Jones) is an important find, given the loss of all but two of the manuscripts of Milton’s original Latin letters included in the 1674 volume. The edition also presents new evidence in regard to Milton’s relationships with the Italian philologist Benedetto Buonmattei, the Greek humanist Leonard Philaras, the radical pastor Jean Labadie (and the French church of London), and the elusive Peter Heimbach.
Helminth Cysteine Proteases Inhibit TRIF-dependent Activation of Macrophages via Degradation of TLR3
Resumo:
Helminth pathogens prepare a Th2 type immunological environment in their hosts to ensure their longevity. They achieve this by secreting molecules that not only actively drive type 2 responses but also suppress type 1 responses. Here, we show that the major cysteine proteases secreted from the helminth pathogens Fasciola hepatica (FheCL1) and Schistosoma mansoni (SmCB1) protect mice from the lethal effects of lipopolysaccharide by preventing the release of inflammatory mediators, nitric oxide, interleukin-6, tumor necrosis factor alpha, and interleukin-12, from macrophages. The proteases specifically block the MyD88-independent TRIF-dependent signaling pathway of Toll-like receptor (TLR) 4 and TLR3. Microscopical and flow cytometric studies, however, show that alteration of macrophage function by cysteine protease is not mediated by cleavage of components of the TLR4 complex on the cell surface but occurs by degradation of TLR3 within the endosome. This is the first study to describe a parasite molecule that degrades this receptor and pinpoints a novel mechanism by which helminth parasites modulate the innate immune responses of their hosts to suppress the development of Th1 responses.
Resumo:
Over the last decade a significant number of studies have highlighted the central role of host antimicrobial (or defence) peptides in modulating the response of innate immune cells to pathogen-associated ligands. In humans, the most widely studied antimicrobial peptide is LL-37, a 37-residue peptide containing an amphipathic helix that is released via proteolytic cleavage of the precursor protein CAP18. Owing to its ability to protect against lethal endotoxaemia and clinically-relevant bacterial infections, LL-37 and its derivatives are seen as attractive candidates for anti-sepsis therapies. We have identified a novel family of molecules secreted by parasitic helminths (helminth defence molecules; HDMs) that exhibit similar biochemical and functional characteristics to human defence peptides, particularly CAP18. The HDM secreted by Fasciola hepatica (FhHDM-1) adopts a predominantly alpha-helical structure in solution. Processing of FhHDM-1 by F. hepatica cathepsin L1 releases a 34-residue C-terminal fragment containing a conserved amphipathic helix. This is analogous to the proteolytic processing of CAP18 to release LL-37, which modulates innate cell activation by classical toll-like receptor (TLR) ligands such as lipopolysaccharide (LPS). We show that full-length recombinant FhHDM-1 and a peptide analogue of the amphipathic C-terminus bind directly to LPS in a concentration-dependent manner, reducing its interaction with both LPS-binding protein (LBP) and the surface of macrophages. Furthermore, FhHDM-1 and the amphipathic C-terminal peptide protect mice against LPS-induced inflammation by significantly reducing the release of inflammatory mediators from macrophages. We propose that HDMs, by mimicking the function of host defence peptides, represent a novel family of innate cell modulators with therapeutic potential in anti-sepsis treatments and prevention of inflammation.
Resumo:
Malaria caused by several species of Plasmodium is major parasitic disease of humans, causing 1-3 million deaths worldwide annually. The widespread resistance of the human parasite to current drug therapies is of major concern making the identification of new drug targets urgent. While the parasite grows and multiplies inside the host erythrocyte it degrades the host cell hemoglobin and utilizes the released amino acids to synthesize its own proteins. The P. falciparum malarial M1 alanyl-aminopeptidase (PfA-M1) is an enzyme involved in the terminal stages of hemoglobin digestion and the generation of an amino acid pool within the parasite. The enzyme has been validated as a potential drug target since inhibitors of the enzyme block parasite growth in vitro and in vivo. In order to gain further understanding of this enzyme, molecular dynamics simulations using data from a recent crystal structure of PfA-M1 were performed. The results elucidate the pentahedral coordination of the catalytic Zn in these metallo-proteases and provide new insights into the roles of this cation and important active site residues in ligand binding and in the hydrolysis of the peptide bond. Based on the data, we propose a two-step catalytic mechanism, in which the conformation of the active site is altered between the Michaelis complex and the transition state. In addition, the simulations identify global changes in the protein in which conformational transitions in the catalytic domain are transmitted at the opening of the N-terminal 8 angstrom-long channel and at the opening of the 30 angstrom-long C-terminal internal chamber that facilitates entry of peptides to the active site and exit of released amino acids. The possible implications of these global changes with regard to enzyme function are discussed.
Resumo:
The temporal expression and secretion of distinct members of a family of virulence-associated cathepsin L cysteine peptidases (FhCL) correlates with the entry and migration of the helminth pathogen Fasciola hepatica in the host. Thus, infective larvae traversing the gut wall secrete cathepsin L3 (FhCL3), liver migrating juvenile parasites secrete both FhCL1 and FhCL2 while the mature bile duct parasites, which are obligate blood feeders, secrete predominantly FhCL1 but also FhCL2.
Resumo:
Opisthorchis viverrini is an important helminth pathogen of humans that is endemic in Thailand and Laos. Adult flukes reside within host bile ducts and feed on epithelial tissue and blood cells. Chronic opisthorchiasis is associated with severe hepatobiliary diseases such as cholangiocarcinoma. Here we report that adult O. viverrini secrete two major cysteine proteases: cathepsin F (Ov-CF-1) and cathepsin B1 (Ov-CB-1). Ov-CF-1 is secreted as an inactive zymogen that autocatalytically processes and activates to a mature enzyme at pH 4.5 via an intermolecular cleavage at the prosegment-mature domain junction. Ov-CB-1 is also secreted as a zymogen but, in contrast to Ov-CF-1, is fully active against peptide and macromolecular substrates despite retaining the N-terminal prosegment. The active Ov-CB-1 zymogen was capable of trans-activating Ov-CF-1 by proteolytic removal of its prosegment at pH 5.5, a pH at which the Ov-CF-1 zymogen cannot autocatalytically activate. Both cathepsins hydrolyse human haemoglobin but their combined action more efficiently degrades haemoglobin to smaller peptides than each enzyme alone. Ov-CF-1 degraded extracellular matrix proteins more effectively than Ov-CB-1 at physiological pH. We propose that Ov-CB-1 regulates Ov-CF-1 activity and that both enzymes work together to degrade host tissue contributing to the development of liver fluke-associated cholangiocarcinoma.