989 resultados para Ridge augmentation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipid components of hydrothermal deposits from the unusual field at 14°45'N MAR and from the typical field at 29°N MAR were studied. For the first time mixed nature of organic matter (OM) from hydrothermal sulfide deposits was established with use of biochemical, gas chromatographic, and molecular methods of studies. In composition of OM lipids of phytoplankton, those of chemosynthesis bacteria and non-biogenic synthesis lipids were determined. Specific conditions of localization of sulfide deposits originated from ''black smokers'' (reducing conditions, absence of free oxygen, presence of reduced sulfur preventing OM from decomposition) let biogenic material, including bacterial one, be preserved in sulfide deposits. The hydrothermal system at 14°45'N MAR is characterized by geological, geochemical and thermodynamic conditions allowing abiogenic synthesis of methane and petroleum hydrocarbons. For sulfide deposits at 29°N and other active hydrothermal fields known at MAR, abiogenic synthesis of hydrocarbons occurs in lower scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Facultative and obligate oligotrophs have been enumerated in March/April 1990 by the MPN-method with 14C-protein hydrolysate as tracer substrate. Obligate (10-3360 cells/ml) and facultative (110-9000 cells/ml) oligotrophs revealed to be the dominant population above Gunnerus Ridge (65°30'-68°S; 31-35°E) at a depth of 25 m compared with eutrophic bacteria (5 to 260 CFU/ml). Above Astrid Ridge (65-68°S; 8-18°E), obligate (0-1100 cells/ml) and facultative oligotrophs (300-9000 cells/ml) were also abundant but not always dominant. Bacterial biomass above Gunnerus Ridge was only between 7.3 and 43.6% of particulate biomass, but biomass of bacteria above Astrid Ridge amounted from 56.9 to >100% of particulate biomass; an exception was station no. PS16/552 with only 22.2% of bacterial biomass. Ratio of bacterial biomass to particulate biomass was negatively correlated with maximal primary production, complementing the view that phytoplankton was the dominant population above Gunnerus Ridge, whereas bacteria predominated above Astrid Ridge. Eutrophic bacteria were also more abundant above Astrid Ridge, with 3 to 6380 CFU/ml. Total bacteria by acridine orange direct counts amounted from 1 x 10**4 to 34.2 x 10**4 cells/ml. Bacterial biomass above Gunnerus Ridge was 1.8 to 10.7, and above Astrid Ridge 5.7 to 13.6 mg C/m*3. Maximal primary production above Gunnerus Ridge was 4.5 to 11.0, and above Astrid Ridge 2.3 to 3.5 mg C/m**3/d.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to assess recent submarine volcanic contributions to the sediments from the active Kolbeinsey Ridge, surface samples were analyzed chemically. The contribution of major and trace elements studied differ within the study area. A statistical analysis of the geochemical variables using factor analysis and cluster method allows to distinguish possible sample groups. Cluster method identifies three distinct sediment groups located in different areas of sedimentation. Group 1 is characterized by highest contents of Fe2O3, V, Co, Ni, Cu and Zn demonstrating the input of volcaniclastic material. Group 2 comprises high values of CaCO3, CaO and Sr representing biogenic carbonate. Group 3 is characterized by the elements K, Rb, Cs, La and Pb indicating the terrigenous component. The absolute percentage of the volcanic, biogenic and terrigenous components in the bulk sediments was calculated by using a normative sediment method. The highest volcanic component (> 60% on a carbonate free basis) is found on the ridge crest. The biogenic component is highest (10-30%) in the eastern part of the Spar Fracture Zone influenced by the East Iceland Current. Samples from the western and southeastern region of the study area contain more than 90% of terrigenous component which appears to be mainly controlled by input of ice-rafted debris.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On Leg 121 of the Ocean Drilling Program, we recovered basaltic rocks from a total of three basement sites in the southern, central, and northern regions of Ninetyeast Ridge. These new sites complement the previous four basement holes drilled during Legs 22 and 26 of the Deep Sea Drilling Project, and confirm the predominantly tholeiitic, light rare earth element-enriched character of the basalts that cap the ridge. The basalts show marked iron enrichment; ferrobasalts occur at Sites 214 and 216 and oceanic andesites at Site 253. All of the basalts recovered during Leg 121 are altered, and range from aphyric olivine tholeiites (Site 756), to strongly plagioclase-phyric basalts (Site 757). Basalts from Site 758, which were clearly erupted in a submarine environment (pillow basalts are present in the section), are sparsely to strongly plagioclase-phyric. The basalts recovered at any one hole are isotopically homogeneous (except for the basalts from Site 758, which show a range of Pb isotopes), and it is possible to relate the magmas at any one site by high-level fractionation processes. However, there are significant variations in isotope ratios and highly incompatible element ratios between sites, which suggest that the mantle source for the ridge basalts was compositionally variable. Such variation, in view of the large volume of magmatic products that form the ridge system, is not surprising. There is not, however, a systematic variation in basalt composition along the ridge. We agree with previous models that relate Ninetyeast Ridge to a mantle plume in the southern Indian Ocean. The tholeiitic, iron-enriched, and voluminous character of the ridge basalts is typical of oceanic islands associated with plumes on or near a mid-ocean ridge (e.g., Iceland, Galapagos Islands, and St. Paul/Amsterdam islands). The absence of recovered alkalic suites is inconsistent with an intraplate setting, such as the Hawaiian Islands or Kerguelen Island. Thus, the major element data, like the gravity data, strongly suggest that the ridge was erupted on or very close to an active spreading center. Isotopically, the most likely plume that created the excess magmatism on the Ridge is the Kerguelen-Heard plume system, but the Ninetyeast Ridge basalts do not represent a simple mixing of the Kerguelen plume and mid-ocean Ninetyeast Ridge basalt mantle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A manganese oxide crust from an extensive deposit in the median valley of the Mid-Atlantic Ridge was found to be unusually high in manganese (up to 39.4% Mn), low in Fe (as low as 0.01% Fe), low in trace metals and deficient in Th230 and Pa231 with respect to the parent uranium isotopes in the sample. The accumulation rate is 100 mm to 200 mm/10 million year, or 2 orders of magnitude faster than the typical rate for deep-sea ferromanganese deposits. The rapid growth rate and unusual chemistry are consistent with a hydrothermal origin or with a diagenetic origin by manganese remobilized from reduced sediments. Because of the association with an active ridge, geophysical evidence indicative of hydrothermal activity, and a scarcity of sediment in the sampling area, we suggest that a submarine hot spring has created the deposit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structure and composition of sub-surface bottom sediments from the southwest Barents Sea have been under study. The study has revealed heterogeneity of sediment structure resulted from temporal irregularity and variability of sedimentation processes. The study of the heavy minerals from 0.1-0.01 mm grain size fraction has shown prevalence of green hornblende, epidote, garnet, and ilmenite in all types of sediments; these minerals are the basis of terrigenous-mineralogical province. At the same time in different areas local terrigenous-mineralogical associations have been identified. Clay mineral composition of in the sediments was quite uniform: biotite, chlorite, hydromica, smectite. Despite this, a number of features indicating initial stages of clay mineral transformation has been identified. Differences in material composition and structure of the studied sediments are associated with rapid change in paleogeographic situation on the land - ice cover melting on the Kola Peninsula and subsequent Holocene climatic situation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Li and Li isotopes have been measured in the clay fraction of sediments recovered from the Middle Valley hydrothermal site on the Juan De Fuca Ridge. The Li content of pure detrital clays is 51 ppm while hydrothermal clays and carbonates have lower Li (22+/-11 ppm). However, there is no clear relationship between the mineralogy of the hydrothermal alteration products and their Li content. The d7Li value of the detrital clays is +5.8?. Hydrothermal clays and carbonates have d7Li in the range of -3.9? to +7.8?; these values do not seem to be dependent on the temperature at which they formed. Modelling of the Li and Li isotope systematics indicates that the fluid from which the alteration products form is significantly enriched in Li (higher than 10000 µmol/kg) relative to pore fluids recovered from within the sediments (up to 589 µmol/kg; [Wheat, C.G., M.J. Mottl, 1994. Data report: trace metal composition of pore water from Sites 855 through 858, Middle valley, Juan De Fuca Ridge. In Mottl, M.J., Davis, E.E., Fisher, A.T., Slack, J.F. (Eds.), Proc. ODP, Sci. Res. 139: 749-755; doi:10.2973/odp.proc.sr.139.269.1994]), and that this Li is derived from sediment. Thus, the alteration products are not in equilibrium with their conjugate pore fluids; rather, the alteration minerals formed at lower water/sediment ratios. This suggests that fluid flow pathways at Middle Valley were more diffuse in the past than they are today.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is dedicated to the geochemical studies of two bottom sediment cores that were taken during cruise 28 of the R/V Professor Logachev in the Mid-Atlantic Ridge (MAR) 16°38'N area in 2006. The chemical compositions of background metalliferous and ore (ore-bearing) carbonate sediments are presented and inter-element correlations are examined. Individual episodes are distinguished in the accumulation history of the ore-bearing and metalliferous sediments on the basis of element factor analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peridotites (diopside-bearing harzburgites) found at 13°N of the Mid-Atlantic Ridge fall into two compositional groups. Peridotites P1 are plagioclase-free rocks with minerals of uniform composition and Ca-pyroxene strongly depleted in highly incompatible elements. Peridotites P2 bear evidence of interaction with basic melt: mafic veinlets; wide variations in mineral composition; enrichment of minerals in highly incompatible elements (Na, Zr, and LREE); enrichment of minerals in moderately incompatible elements (Ti, Y, and HREE) from P1 level to abundances 4-10 times higher toward the contacts with mafic aggregates; and exotic mineral assemblages Cr-spinel + rutile and Cr-spinel + ilmenite in peridotite and pentlandite + rutile in mafic veinlets. Anomalous incompatible-element enrichment of minerals from peridotites P2 occurred at the spinel-plagioclase facies boundary, which corresponds to pressure of about 0.8-0.9 GPa. Temperature and oxygen fugacity were estimated from spinel-orthopyroxene-olivine equilibria. Peridotites P1 with uniform mineral composition record temperature of the last complete recrystallization at 940-1050°C and FMQ buffer oxygen fugacity within the calculation error. In peridotites P2, local assemblages have different compositions of coexisting minerals, which reflects repeated partial recrystallization during heating to magmatic temperatures (above 1200°C) and subsequent reequilibration at temperatures decreasing to 910°C and oxygen fugacity significantly higher than FMQ buffer (delta log fO2 = 1.3-1.9). Mafic veins are considered to be a crystallization product from basic melt enriched in Mg and Ni via interaction with peridotite. The geochemical type of melt reconstructed by the equilibrium with Ca-pyroxene is defined as T-MORB: (La/Sm)_N~1.6 and (Ce/Yb) )_N~2.3 that is well consistent with compositional variations of modern basaltic lavas in this segment of the Mid-Atlantic Ridge, including new data on quenched basaltic glasses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concentrations of rare earth elements (REEs), sulphate, hydrogen sulphide, total alkalinity, calcium, magnesium and phosphate were measured in shallow (<12 cm below seafloor) pore waters from cold-seep sediments on the northern and southern summits of Hydrate Ridge, offshore Oregon. Downward-decreasing sulphate and coevally increasing sulphide concentrations reveal sulphate reductionas dominant early diagenetic process from ~2 cm depth downwards. A strong increase of total dissolved REE concentrations is evident immediately below the sediment-water interface, which can be related to early diagenetic release of REEs into pore water resulting from the remineralization of particulate organic matter. The highest pore water REE concentrations were measured close to the sediment-water interface at ~2 cm depth. Distinct shale normalized REE patterns point to particulate organic matter and iron oxides as main REE sources in the upper ~2-cm depth interval. In general, the pore waters have shalenormalized patterns reflecting heavy REE (HREE) enrichment, which suggests preferential complexation of HREEs with carbonate ions. Below ~2 cm depth, a downward decrease in REE correlates with a decrease in pore water calcium concentrations. At this depth, the anaerobic oxidation of methane (AOM) coupled to sulphate reduction increases carbonate alkalinity through the production of bicarbonate, which results in the precipitation of carbonate minerals. It seems therefore likely that the REEs and calcium are consumed during vast AOM-induced precipitation of carbonate in shallow Hydrate Ridge sediments. The analysis of pore waters from Hydrate Ridge shed new light on early diagenetic processes at cold seeps, corroborating the great potential of REEs to identify geochemical processes and to constrain environmental conditions.