997 resultados para Retinal adaptation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hidden Markov model (HMM)-based speech synthesis systems possess several advantages over concatenative synthesis systems. One such advantage is the relative ease with which HMM-based systems are adapted to speakers not present in the training dataset. Speaker adaptation methods used in the field of HMM-based automatic speech recognition (ASR) are adopted for this task. In the case of unsupervised speaker adaptation, previous work has used a supplementary set of acoustic models to estimate the transcription of the adaptation data. This paper first presents an approach to the unsupervised speaker adaptation task for HMM-based speech synthesis models which avoids the need for such supplementary acoustic models. This is achieved by defining a mapping between HMM-based synthesis models and ASR-style models, via a two-pass decision tree construction process. Second, it is shown that this mapping also enables unsupervised adaptation of HMM-based speech synthesis models without the need to perform linguistic analysis of the estimated transcription of the adaptation data. Third, this paper demonstrates how this technique lends itself to the task of unsupervised cross-lingual adaptation of HMM-based speech synthesis models, and explains the advantages of such an approach. Finally, listener evaluations reveal that the proposed unsupervised adaptation methods deliver performance approaching that of supervised adaptation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

研究测定了西藏那曲(4,500 m)、云南中甸(3,300 m)、云南德钦(3,300 m)地区3匹藏马线粒体全基因组序列.3个地区的藏马线粒体基因组全长以及结构均与韩国济州岛的马类似,但比瑞典马线粒体基因组短.藏马基因组在DNA序列上的两两相似性达99.3%.通过对线粒体蛋白编码区的分析发现,NADH6基因的蛋白序列在三匹藏马中均表现快速进化的现象.这表明NADH6基因在藏马高原适应进化过程中扮演着重要角色.此外,利用7匹藏马的D-loop区域序列以及与其亲缘关系较近的马的序列首次构建的藏马的系统发育树显示,那曲藏马与中甸、德钦藏马属于不同的分支,且存在较大的遗传多样性,表明藏马可能为多地区起源.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational analyses of dendritic computations often assume stationary inputs to neurons, ignoring the pulsatile nature of spike-based communication between neurons and the moment-to-moment fluctuations caused by such spiking inputs. Conversely, circuit computations with spiking neurons are usually formalized without regard to the rich nonlinear nature of dendritic processing. Here we address the computational challenge faced by neurons that compute and represent analogue quantities but communicate with digital spikes, and show that reliable computation of even purely linear functions of inputs can require the interplay of strongly nonlinear subunits within the postsynaptic dendritic tree.Our theory predicts a matching of dendritic nonlinearities and synaptic weight distributions to the joint statistics of presynaptic inputs. This approach suggests normative roles for some puzzling forms of nonlinear dendritic dynamics and plasticity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

State-of-the-art large vocabulary continuous speech recognition (LVCSR) systems often combine outputs from multiple subsystems developed at different sites. Cross system adaptation can be used as an alternative to direct hypothesis level combination schemes such as ROVER. The standard approach involves only cross adapting acoustic models. To fully exploit the complimentary features among sub-systems, language model (LM) cross adaptation techniques can be used. Previous research on multi-level n-gram LM cross adaptation is extended to further include the cross adaptation of neural network LMs in this paper. Using this improved LM cross adaptation framework, significant error rate gains of 4.0%-7.1% relative were obtained over acoustic model only cross adaptation when combining a range of Chinese LVCSR sub-systems used in the 2010 and 2011 DARPA GALE evaluations. Copyright © 2011 ISCA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For many applications, it is necessary to produce speech transcriptions in a causal fashion. To produce high quality transcripts, speaker adaptation is often used. This requires online speaker clustering and incremental adaptation techniques to be developed. This paper presents an integrated approach to online speaker clustering and adaptation which allows efficient clustering of speakers using the same accumulated statistics that are normally used for adaptation. Using a consistent criterion for both clustering and adaptation should yield gains for both stages. The proposed approach is evaluated on a meetings transcription task using audio from multiple distant microphones. Consistent gains over standard clustering and adaptation were obtained. Copyright © 2011 ISCA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Language models (LMs) are often constructed by building multiple individual component models that are combined using context independent interpolation weights. By tuning these weights, using either perplexity or discriminative approaches, it is possible to adapt LMs to a particular task. This paper investigates the use of context dependent weighting in both interpolation and test-time adaptation of language models. Depending on the previous word contexts, a discrete history weighting function is used to adjust the contribution from each component model. As this dramatically increases the number of parameters to estimate, robust weight estimation schemes are required. Several approaches are described in this paper. The first approach is based on MAP estimation where interpolation weights of lower order contexts are used as smoothing priors. The second approach uses training data to ensure robust estimation of LM interpolation weights. This can also serve as a smoothing prior for MAP adaptation. A normalized perplexity metric is proposed to handle the bias of the standard perplexity criterion to corpus size. A range of schemes to combine weight information obtained from training data and test data hypotheses are also proposed to improve robustness during context dependent LM adaptation. In addition, a minimum Bayes' risk (MBR) based discriminative training scheme is also proposed. An efficient weighted finite state transducer (WFST) decoding algorithm for context dependent interpolation is also presented. The proposed technique was evaluated using a state-of-the-art Mandarin Chinese broadcast speech transcription task. Character error rate (CER) reductions up to 7.3 relative were obtained as well as consistent perplexity improvements. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Humans skillfully manipulate objects and tools despite the inherent instability. In order to succeed at these tasks, the sensorimotor control system must build an internal representation of both the force and mechanical impedance. As it is not practical to either learn or store motor commands for every possible future action, the sensorimotor control system generalizes a control strategy for a range of movements based on learning performed over a set of movements. Here, we introduce a computational model for this learning and generalization, which specifies how to learn feedforward muscle activity in a function of the state space. Specifically, by incorporating co-activation as a function of error into the feedback command, we are able to derive an algorithm from a gradient descent minimization of motion error and effort, subject to maintaining a stability margin. This algorithm can be used to learn to coordinate any of a variety of motor primitives such as force fields, muscle synergies, physical models or artificial neural networks. This model for human learning and generalization is able to adapt to both stable and unstable dynamics, and provides a controller for generating efficient adaptive motor behavior in robots. Simulation results exhibit predictions consistent with all experiments on learning of novel dynamics requiring adaptation of force and impedance, and enable us to re-examine some of the previous interpretations of experiments on generalization. © 2012 Kadiallah et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

State-of-the-art large vocabulary continuous speech recognition (LVCSR) systems often combine outputs from multiple sub-systems that may even be developed at different sites. Cross system adaptation, in which model adaptation is performed using the outputs from another sub-system, can be used as an alternative to hypothesis level combination schemes such as ROVER. Normally cross adaptation is only performed on the acoustic models. However, there are many other levels in LVCSR systems' modelling hierarchy where complimentary features may be exploited, for example, the sub-word and the word level, to further improve cross adaptation based system combination. It is thus interesting to also cross adapt language models (LMs) to capture these additional useful features. In this paper cross adaptation is applied to three forms of language models, a multi-level LM that models both syllable and word sequences, a word level neural network LM, and the linear combination of the two. Significant error rate reductions of 4.0-7.1% relative were obtained over ROVER and acoustic model only cross adaptation when combining a range of Chinese LVCSR sub-systems used in the 2010 and 2011 DARPA GALE evaluations. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated whether inkjet printing technology can be extended to print cells of the adult rat central nervous system (CNS), retinal ganglion cells (RGC) and glia, and the effects on survival and growth of these cells in culture, which is an important step in the development of tissue grafts for regenerative medicine, and may aid in the cure of blindness. We observed that RGC and glia can be successfully printed using a piezoelectric printer. Whilst inkjet printing reduced the cell population due to sedimentation within the printing system, imaging of the printhead nozzle, which is the area where the cells experience the greatest shear stress and rate, confirmed that there was no evidence of destruction or even significant distortion of the cells during jet ejection and drop formation. Importantly, the viability of the cells was not affected by the printing process. When we cultured the same number of printed and non-printed RGC/glial cells, there was no significant difference in cell survival and RGC neurite outgrowth. In addition, use of a glial substrate significantly increased RGC neurite outgrowth, and this effect was retained when the cells had been printed. In conclusion, printing of RGC and glia using a piezoelectric printhead does not adversely affect viability and survival/growth of the cells in culture. Importantly, printed glial cells retain their growth-promoting properties when used as a substrate, opening new avenues for printed CNS grafts in regenerative medicine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptation to speaker and environment changes is an essential part of current automatic speech recognition (ASR) systems. In recent years the use of multi-layer percpetrons (MLPs) has become increasingly common in ASR systems. A standard approach to handling speaker differences when using MLPs is to apply a global speaker-specific constrained MLLR (CMLLR) transform to the features prior to training or using the MLP. This paper considers the situation when there are both speaker and channel, communication link, differences in the data. A more powerful transform, front-end CMLLR (FE-CMLLR), is applied to the inputs to the MLP to represent the channel differences. Though global, these FE-CMLLR transforms vary from time-instance to time-instance. Experiments on a channel distorted dialect Arabic conversational speech recognition task indicates the usefulness of adapting MLP features using both CMLLR and FE-CMLLR transforms. © 2013 IEEE.