421 resultados para Respirable microspheres


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we have established the efficient mucosal delivery of vaccines using absorption enhancers and chitosan. In addition, the use of chitosan was shown to enhance the action of other known adjuvants, such as CTB or Quil-A. Collectively, the results presented herein indicate that chitosan has excellent potential as a mucosal adjuvant. We have evaluated a number of absorption enhancers for their adjuvant activity in vivo. Polyornithine was shown to engender high scrum immune reasons to nasally delivered antigens, with higher molecular weight polyornithine facilitating the best results. We have demonstrated for the first time that vitamin E TPGS can act as mucosal adjuvant. Deoxycholic acid, cyclodextrins and acylcarnitines were also identified as effective mucosal adjuvants and showed enhanced immune responses to nasally delivered TT, DT and Yersinia pestis V and F1 antigens. Previously, none of these agents, common in their action as absorption enhancing agents, have been shown to have immunopotentiating activity for mucosal immunisation. We have successfully developed novel surface modified microspheres using chitosan as an emulsion stabiliser during the preparation of PLA microspheres. It was found that immune responses could be substantially increased, effectively exploiting the immunopenetrating characteristics of both chitosan and PLA microspheres in the same delivery vehicle. In the same study, comparison of intranasal and intramuscular routes of administration showed that with these formulations, the nasal route could be as effective as intramuscular delivery, highlighting the potential of mucosal administration for these particulate delivery systems. Chitosan was co-administered with polymer microspheres. It was demonstrated that this strategy facilitates markedly enhanced immune responses in both magnitude and duration following intramuscular administration. We conclude that this combination shows potential for single dose administration of vaccines. In another study, we have shown that the addition of chitosan to alum adsorbed TT was able to enhance immune responses. PLA micro/nanospheres were prepared and characterised with discreet particle size ranges. A smaller particle size was shown to facilitate higher scrum IgG responses following nasal administration. A lower antigen loading was additionally identified as being preferential for the induction of immune responses in combination with the smaller particle size. This may be due to the fact that the number of particles will be increased when antigen loading is low, which may in turn facilitate a more widespread uptake of particles. PLA lamellar particles were prepared and characterised. Adsorbed TT was evaluated for the potential to engender immune responses in vivo. These formulations were shown to generate effective immune responses following intramuscular administration. Positively charged polyethylcyanoacrylate and PLA nanoparticies were designed and characterised and their potential as delivery vehicles for DNA vaccines was investigated. Successful preparation of particles with narrow size distribution and positive surface charge (imparted by the inclusion of chitosan) was achieved. In the evaluation of antibody responses to DNA encoded antigen in the presence of alum administered intranasally, discrimination between the groups was only seen following intramuscular boosting with the corresponding protein. Our study showed that DNA vaccines in the presence of either alum or Quil-A may advantageously influence priming of the immune system by a mucosal route. The potential for the combination of adjuvants, Quil-A and chitosan, to enhance antibody responses to plasmid encoded antigen co-administered with the corresponding protein antigen was shown and this is worthy of further investigation. The findings here have identified novel adjuvants and approaches to vaccine delivery. In particular, chitosan or vitamin E TPGS are shown here to have considerable promise as non-toxic, safe mucosal adjuvants. In addition, biodegradable mucoadhesive delivery systems, surface modified with chitosan in a single step process, may have application for other uses such as drug and gene delivery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ribozymes are short strands of RNA that possess a huge potential as biological tools for studying gene expression and as therapeutic agents to down-regulate undesirable gene expression. Successful application of ribozymes requires delivery to the target site in sufficient amounts for an adequate duration. However, due to their large size and polyanionic character ribozymes are not amenable to transport across biological membranes. In this study a chemically modified ribozyme with enhanced biological stability, targeted against the EGFR mRNA has been evaluated for cellular delivery to cultured glial and neuronal cells with a view to developing treatments for brain tumours. Cellular delivery of free ribozyme was characterised in cultured glial and neuronal cells from the human and rat. Delivery was very limited and time dependent with no consistent difference observed between glial and neuronal cells in both species. Cellular association was largely temperature and energy-dependent with a small component of non-energy dependent association. Further studies showed that ribozyme cellular association was inhibited with self and cross competition with nucleic and non-nucleic acid polyanions indicating the presence of cell surface ribozyme-binding molecules. Trypsin washing experiments further implied that the ribozyme binding surface molecules were protein by nature. Dependence of cellular association on pH indicated that interaction of ribozyme with cell surface molecules was based on ionic interactions. Fluoresence studies indicated that, post cell association, ribozymes were sequestered in sub-cellular vesicles. South-Western blots identified several cell surface proteins which bind to ribozymes and could facilitate cellular association. The limited cellular association observed with free ribozyme required the development and evaluation of polylactide-co-glycolide microspheres incorporating ribozyme for enhanced cellular delivery. Characterisation of microsphere mediated delivery of ribozyme in cultured glial and neuronal cells showed that association increased by 18 to 27-fold in all cell types with no differences observed between cell lines and species. Microsphere mediated delivery was temperature and energy dependent and independent of pH. In order to assess the potential of PLGA micro spheres for the CNS delivery of ribozyme the distribution of ribozyme entrapping microspheres was investigated in rat CNS after intracerebroventricular injection. Distribution studies demonstrated that after 24 hours there was no free ribozyme present in the brain parenchyma, however microsphere entrapped ribozyme was found in the CNS. Microspheres remained in the ventricular system after deposition and passed from the lateral ventricles to the third and fourth ventricle and in the subarachnoid space. Investigation of the influence of microsphere size on the distribution in CNS demonstrated that particles up to 2.5 and O.5f.lm remained in the ventricles around the choroid plexus and ependymal lining.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, much interest has focused on the significance of inducing not only systemic immunity but also good local immunity at susceptible mucosal surfaces. A new field of mucosal immunity has been established as information accumulates on gut-associated lymphoid tissue, bronchus-associated lymphoid tissue and nasal-associated lymphoid tissue (GALT, BALT and NALT, respectively) and on their role in both local and systemic immune responses. This project, following the line of investigation started by other workers, was designed to study the use of microspheres to deliver antigens by the mucosal routes (oral and nasal). Antigen-containing microspheres were prepared with PLA and PLGA, by either entrapment within the particles or adsorption onto the surface. The model protein antigens used in this work were mainly tetanus toxoid (TT), bovine serum albumin (BSA) and γ-globulins.In vitro investigations included the study of physicochemical properties of the particulate carriers as well as the assessment of stability of the antigen molecules throughout the formulation procedures. Good loading efficiencies were obtained with both formulation techniques, which did not affect the immunogenicity of the antigens studied. The influence of the surfactant employed on the microspheres' surface properties was demonstrated as well as its implications on the adsorption of proteins. Preparations containing protein adsorbed were shown to be slightly more hydrophobic than empty PLA microspheres, which can enhance the uptake of particles by the antigen presenting cells that prefer to associate with hydrophobic surfaces. Systemic and mucosal immune responses induced upon nasal, oral and intramuscular administration have been assessed and, when appropriate, compared with the most widely used vaccine adjuvant, aluminium hydroxide. The results indicate that association of TT with PLA microspheres through microencapsulation or adsorption procedures led to an enhancement of specific mucosal IgA and IgG and systemic IgG responses to the mucosal delivered antigens. Particularly, nasal administration of TT produced significantly higher serum levels of specific IgG in test animals, as compared to control groups, suggesting that this is a potential route for vaccination. This implies the uptake and transfer of particles through the nasal mucosa, which was further demonstrated by the presence in the blood stream of latex particles as early as 10 min after nasal administration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of immunological adjuvants has been established since 1924 and ever since many candidates have been extensively researched in vaccine development. The controlled release of vaccine is another area of biotechnology research, which is advancing rapidly with great potential and success. Encapsulation of peptide and protein drugs within biodegradable microspheres has been amongst the most successful of approaches within the past decade. The present studies have focused on combining the advantages of microsphere delivery systems composed of biodegradable polylactide (PLLA) and polylactide-co-glycolide (PLGA) polymers with that of safe and effective adjuvants. The research efforts were directed to the development of single-dose delivery vehicles which, can be manufactured easily, safely, under mild and favourable conditions to the encapsulated antigens. In pursuing this objective non ionic block copolymers (NIBCs) (Pluronics@ LI01 and L121) were incorporated within poly-dl-lactide (PDLA) micorospheres prepared with emulsification-diffusion method. LI0I and L121 served both as adjuvants and stabilising agents within these vaccine delivery vehicles. These formulations encapsulating the model antigens lysozyme, ovalbumin (OVA) and diphtheria toxoid (DT) resulted in high entrapment efficiency (99%), yield (96.7%) and elicited high and sustained immune response (IgG titres up to 9427) after one single administration over nine months. The structural integrity of the antigens was preserved within these formulations. In evaluating new approaches for the use of well-established adjuvants such as alum, these particles were incorporated within PLLA and PLGA microspheres at much lesser quantities (5-10 times lower) than those contained within conventional alum-adsorbed vaccines. These studies focused on the incorporation of the clinically relevant tetanus toxoid (TT) antigen within biodegradable microspheres. The encapsulation of both alum particles and TT antigen within these micropheres resulted in preparations with high encapsulation efficiency (95%) and yield (91.2%). The immune response to these particles was also investigated to evaluate the secretion of serum IgG, IgG1, IgG2a and IgG2b after a single administration of these vaccines. The Splenic cells proliferation was also investigated as an indication for the induction of cell mediated immunity. These particles resulted in high and sustained immune response over a period of 14 months. The stability of TT within particles was also investigated under dry storage over a period of several months. NIBC microspheres were also investigated as potential DNA vaccine delivery systems using hepatitis B plasmid. These particles resulted in micro spheres of 3-5 μm diameter and were shown to preserve the integrity of the encapsulated (27.7% entrapment efficiency) hepatitis B plasmid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Pulmonary gene therapy requires aerosolisation of the gene vectors to the target region of the lower respiratory tract. Pulmonary absorption enhancers have been shown to improve the penetration of pharmaceutically active ingredients in the airway. In this study, we investigate whether certain absorption enhancers may also enhance the aerosolisation properties of spray-dried powders containing non-viral gene vectors. Methods: Spray-drying was used to prepare potentially respirable trehalose-based dry powders containing lipid-polycation-pDNA (LPD) vectors and absorption enhancers. Powder morphology and particle size were characterised using scanning electron microscopy and laser diffraction, respectively, with gel electrophoresis used to assess the structural integrity of the pDNA. The biological functionality of the powders was quantified using in vitro cell (A549) transfection. Aerosolisation from a Spinhaler® dry powder inhaler into a multistage liquid impinger (MSLI) was used to assess the in vitro dispersibility and deposition of the powders. Results: Spray-dried powder containing dimethyl-β-cyclodextrin (DMC) demonstrated substantially altered particle morphology and an optimal particle size distribution for pulmonary delivery. The inclusion of DMC did not adversely affect the structural integrity of the LPD complex and the powder displayed significantly greater transfection efficiency as compared to unmodified powder. All absorption enhancers proffered enhanced powder deposition characteristics, with the DMC-modified powder facilitating high deposition in the lower stages of the MSLI. Conclusions: Incorporation of absorption enhancers into non-viral gene therapy formulations prior to spray-drying can significantly enhance the aerosolisation properties of the resultant powder and increase biological functionality at the site of deposition in an in vitro model. Copyright © 2005 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In our attempts to thwart the unwanted attentions of microbes by prophylactic and therapeutic vaccination, the knowledge of interactions at the molecular level may prove to be an invaluable asset. This article examines how particulate delivery systems such as liposomes and polymer microspheres can be applied in the light of recent advances in immunological understanding. Some of the biological interactions of these delivery systems are discussed with relevance for antigen trafficking and molecular pathways of immunogenicity and emphasis on the possible interaction of liposomal components. In particular, traditional concepts such as antigen protection, delivery to antigen presenting cells and depot formation remain important aspects, whilst the inclusion of selected co-adjuvants and enhanced delivery of these moieties in conjunction with antigen now has a firm rationale. © 2006 The Authors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vaccines remain a key tool in the defence against major diseases. However, in the development of vaccines a trade off between safety and efficacy is required with newer vaccines, based on sub-unit proteins and peptides, displaying improved safety profiles yet suffering from low efficacy. Adjuvants can be employed to improve their potency, but currently there are only a limited number of adjuvant systems licensed for clinical use. Of the new adjuvants being investigated, particulate systems offer several advantages including: passive targeting to the antigen-presenting cells within the immune system, protection against adjuvant degradation, and ability for sustained antigen release. There has been a range of particulate vaccine delivery systems outlined in recent patents including polymer-based microspheres (which are generally more focused on the use of synthetic polymers, in particular the polyesters) and surfactant-based vesicles. Within these formulations, several patented systems are exploiting the use of cationic lipids which, despite their limitations in gene therapy, clearly offer strong potential as adjuvants. Within this review, the current range of particulate system technologies being investigated as potential adjuvants are discussed with regard to both their respective advantages and the potential hurdles which must be overcome for such systems to be converted into successful pharmaceutical products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This present study compares the efficacy of microsphere formulations, and their method of antigen presentation, for the delivery of the TB sub-unit vaccine antigen, Ag85B-ESAT-6. Microspheres based on poly(lactide-co-glycolide) (PLGA) and chitosan incorporating dimethyldioctadecylammonium bromide (DDA) were prepared by either the w/o/w double emulsion method (entrapped antigen) or the o/w single emulsion method (surface bound antigen), and characterised for their physico-chemical properties and their ability to promote an immune response to Ag85B-ESAT-6. The method of preparation, and hence method of antigen association, had a pronounced effect on the type of immune response achieved from the microsphere formulations, with surface bound antigen favouring a humoural response, whereas entrapped antigen favoured a cellular response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To assess the impact of light scatter, similar to that introduced by cataract on retinal vessel blood oxygen saturation measurements using poly-bead solutions of varying concentrations. Eight healthy, young, non-smoking individuals were enrolled for this study. All subjects underwent digital blood pressure measurements, assessment of non-contact intraocular pressure, pupil dilation and retinal vessel oximetry using dual wavelength photography (Oximetry Module, Imedos Systems, Germany). To simulate light scatter, cells comprising a plastic collar and two plano lenses were filled with solutions of differing concentrations (0.001, 0.002 and 0.004%) of polystyrene microspheres (Polysciences Inc., USA). The adopted light scatter model showed an artifactual increase in venous optical density ratio (p=0.036), with the 0.004% condition producing significantly higher venous optical density ratio values when compared to images without a cell in place. Spectrophotometric analysis, and thus retinal vessel oximetry of the retinal vessels, is altered by artificial light scatter. © 2013 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This present study compares the efficacy of microsphere formulations, and their method of antigen presentation, for the delivery of the TB sub-unit vaccine antigen, Ag85B-ESAT-6. Microspheres based on poly(lactide-co-glycolide) (PLGA) and chitosan incorporating dimethyldioctadecylammonium bromide (DDA) were prepared by either the w/o/w double emulsion method (entrapped antigen) or the o/w single emulsion method (surface bound antigen), and characterised for their physico-chemical properties and their ability to promote an immune response to Ag85B-ESAT-6. The method of preparation, and hence method of antigen association, had a pronounced effect on the type of immune response achieved from the microsphere formulations, with surface bound antigen favouring a humoural response, whereas entrapped antigen favoured a cellular response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we demonstrate that co-spray-drying a model protein with sodium carboxymethylcellulose (NaCMC) protects protein integrity during spray-drying, and that the resultant spray-dried powders can be successfully dispersed in hydrofluoroalkane (HFA) propellant to prepare pressurised metered dose (pMDI) formulations that exhibit high respirable fractions. The spray-dried powders were formulated as HFA-134a pMDI suspensions in the absence of any other excipients (e.g. surfactants) or co-solvents (e.g. ethanol). The in vitro aerosolisation profile of these systems was assessed using the twin stage impinger; fine particle fractions (FPF) ≥50% of the recovered dose were obtained. Following storage for five months, the aerosolisation performance was reassessed; the NaCMC-free formulation demonstrated a significant decrease in FPF, whereas the performance of the NaCMC-modified formulations was statistically equivalent to their initial performance. Thus, formulation of pMDI suspensions using NaCMC-based spray-dried powders is a promising approach for the pulmonary delivery of proteins and peptides. © 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eye drops are convenient for patients, but achieving therapeutic doses and maintaining sustained drug release without frequent re-application to treat diseases of the retina has been largely unsuccessful. Topical administration of drugs is hindered by the anatomy, physiology, and biochemistry of the eye and its highly effective defence mechanisms. Advances in nanotechnology have led to the experimental use of topical permeation-enhancing liposomes, emulsions, and microspheres to enhance absorption and penetration of drugs across membranes; allow controlled release of the drug; and to target drugs at distinct tissues to allow sufficient local bioavailability. In the near future it is hoped that improved technologies may provide means of sustained topical drug delivery for retinal therapy, with improved side-effect profiles and reduced cost compared with currently available clinical treatments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis describes the synthesis of functionalised polymeric material by variety of free-radical mediated polymerisation techniques including dispersion emulsion, seeded emulsion, suspension and bulk polymerisation reactions. Organic fluorophores and nanoparticles such as quantum dots were incorporated within polymeric materials, in particular, thiol-functionalised polymer microspheres, which were fluorescently labelled either during synthesis or by covalent attachment post synthesis. The resultant fluorescent polymeric conjugates were then assessed for their utility in biological systems as an analytical tool for cells or biological structures. Quantum dot labelled, thiol-functionalised microspheres were assessed for their utility in the visualisation and tracking of red blood cells. Determination of the possible internalisation of fluorescent microspheres into red blood cells was required before successful tracking of red blood cells could take place. Initial work appeared to indicate the presence of fluorescent microspheres inside red blood cells by the process of beadfection. A range of parameters were also investigated in order to optimise beadfection. Thiol-functionalised microspheres labelled successfully with organic fluorophores were used to image the tear film of the eye. A description of problems encountered with the covalent attachment of hydrophilic, thiol-reactive fluorescent dyes to a variety of modified polymer microspheres is also included in this section. Results indicated large microspheres were particularly useful when tracking the movement of fluid along the tear meniscus. Functional bulk polymers were synthesised for assessment of their interaction with titanium dioxide nanoparticles. Thiol-functionalised polymethyl methacrylate and spincoated thiouronium-functionalised polystyrene appeared to facilitate the attachment of titanium dioxide nanoparticles. Interaction assays included the use of XPS analysis and processes such as centrifugation. Attempts to synthesise 4-vinyl catechol, a compound containing hydroxyl moieties with potential for coordination with titanium dioxide nanoparticles, were also carried out using 3,4-dihydroxybenzaldehyde as the starting material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Acanthamoebae, in common with other protozoa, readily endocytose particulate material, which in turn may lead to the spread of infectious disease. Methods: Evaluation and quantification of plain and carboxylate FITC-microsphere association with acanthamoebal trophzoites was undertaken using a combination of flow cytometry and confocal microscopy. Trophozoites from strains and species of Acanthamoeba were exposed to plain and carboxylate FITC-microspheres. Microsphere size and aspects such as trophozoite starvation, maturity, and exposure to metabolic inhibitors were assessed. Results: All species and strains of Acanthamoeba readily endocytosed plain and carboxylate microspheres. Starving trophozoites significantly increased binding and potential ingestion of microspheres, whereas trophozoites of increasing maturity lost such abilities. Trophozoites showed a significant preference for 2.0- and 3.0-μm-diameter microspheres when compared with other sizes, which in turn could occupy much of the cytoplasm. The physiological inhibitors sodium azide, 2,4-clinitrophenol, and cytochalasin B reduced microsphere association with trophozoites; however, some microspheres still bound and associated with trophozoites after inhibitor exposure, a manifestation of both active and inactive agent involvement in microsphere endocytosis. Conclusions: Even though the origins of microsphere binding by acanthamoebal trophozoite remains shrouded, the combination of flow cytometry and confocal microscopy supported synergistic quantification and qualification of trophozoite-microsphere endocytosis. © 2006 International Society for Analytical Cytology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sustained delivery of multiple agents to the lung offers potential benefits to patients. This study explores the preparation of highly respirable dual-loaded spray-dried double emulsions. Spray-dried powders were produced from water-in-oil-in-water (w/o/w) double emulsions, containing salbutamol sulphate and/or beclometasone dipropionate in varying phases. The double emulsions contained the drug release modifier polylactide co-glycolide (PLGA 50 : 50) in the intermediate organic phase of the original micro-emulsion and low molecular weight chitosan (Mw<190 kDa: emulsion stabilizer) and leucine (aerosolization enhancer) in the tertiary aqueous phase. Following spray-drying resultant powders were physically characterized: with in vitro aerosolization performance and drug release investigated using a Multi-Stage Liquid Impinger and modified USP II dissolution apparatus, respectively. Powders generated were of a respirable size exhibiting emitted doses of over 95% and fine particle fractions of up to 60% of the total loaded dose. Sustained drug release profiles were observed during dissolution for powders containing agents in the primary aqueous and secondary organic phases of the original micro-emulsion; the burst release of agents was witnessed from the tertiary aqueous phase. The novel spray-dried emulsions from this study would be expected to deposit and display sustained release character in the lung.