945 resultados para Resistance of last-resort antibiotics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Survival studies were conducted on Legionella pneumophila cells that had been grown intracellulary in Acanthamoeba polyphaga and then exposed to polyhexamethylene biguanide (PHMB), benzisothiazolone (BIT), 5-chloro-N-methylisothiazolone (CMIT) and tetradecyltrimethyl ammonium bromide (TTAB). Susceptibilities were also determined for L.pneumophila grown under nutrient sufficient and iron-, nitrogen- and phosphate-depleted conditions, in a chemically defined medium. BIT was relatively ineffective against cells grown under iron-depletion; in contrast iron-depleted conditions increased the susceptibilities of cells to PHMB, TTAB and CMIT. Cells grown under phosphate-depletion showed a marked increase in sensitivity towards all the biocides. Conversely, the activities of all four biocides were greatly reduced against L.pneumophila grown in amoebae. To study the physiological basis for the increased resistance of intra-amoebal grown legionella, the surface properties of the cells were examined by studying outer membrane proteins (OMs), lipopolysaccharides and cellular fatty acids. Intra-amoebal grown legionella were found to differ in several respects compared to cells grown in vitro; they contained a novel 15-kDal OM protein and a monosaturated straight-chain fatty acid (18:19). These compounds were also found in abundant quantities in the host amoeba. Intra-amoebal grown legionella contained more LPS bands than did in vitro grown organisms and were less susceptible to protease K digestion. Cells grown under phosphate depletion were markedly sensitive to protease K digestion and contained lower levels of LPS. Immunoblot analysis of intra-amoebal grown legionella with anti-acanthamoebal serum revealed that both the surface of the bacteria and sarkosyl extracted OMs contained amoebal proteins. These findings suggest that the 15-kDal OM protein is likely to be of amoebal origin and binds tightly to the OM of the bacterium. It is proposed that disruption of amoebal membranes, as a result of intra-amoebal infection liberates macromolecules, including a 15-kDal polypeptide, a major constituent of the membrane, which associates closely with the surface of the legionellae. Thus L.pneumophila which have extraneous membrane material bound to their surface may respond differently to biocide inactivation, as these macromolecules may act as a penetration barrier to such agents. This phenomenon could contribute to the recalcitrance of legionellae in water systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis focuses on the investigation of the abrasion resistance of fibre reinforced concrete floors at both the macro and micro levels. A literature review of the available literature concerning subjects allied to the current project is included. This highlights themes relevant to wear mechanisms and the factors influencing it: factors that affect the abrasion resistance of concrete and several test methods for assessing it; and the historical development of fibres and the properties of different fibre types and their influence on concrete. Three accelerated abrasion testers were compared and critically discussed for their suitability for assessing the abrasion resistance of concrete floors. Based on the experimental findings one accelerated abrasion apparatus was selected as more appropriate to be used for carrying out the main investigations. The laboratory programme that followed was undertaken to investigate the influence of various material and construction factors on abrasion resistance. These included mix variations (w/c ratio), fibre reinforcement, geometry, type and volume, curing method and superplasticizing agents. The results clearly show that these factors significantly affected abrasion resistance and several mechanisms were presumed to explain and better understand these observations. To verify and understand these mechanisms that are accountable for the breakdown of concrete slabs, the same concrete specimens that were used for the macro-study, were also subjected to microstructutural investigations using techniques such as Microhardness examination, Mercury intrusion porosimetry and Petrographic examination. It has been found that the abrasion resistance of concrete is primarily dependent on the microstructure and porosity of the concrete nearest to the surface. The feasibility of predicting the abrasion resistance of fibre reinforced concrete floors by indirect and non-destructive methods was investigated using five methods that have frequently been used for assessing the quality of concrete. They included the initial surface absorption test, the impact test, ball cratering, the scratch test and the base hardness test. The impact resistance (BRE screed tester) and scratch resistance (Base hardness tester) were found to be the most sensitive to factors affecting abrasion resistance and hence are considered to be the most appropriate testing techniques. In an attempt to develop an appropriate method for assessing the abrasion resistance of heavy-duty industrial concrete floors, it was found that the presence of curing/sealing compound on the concrete surface at the time of accelerated abrasion testing produces inappropriate results. A preliminary investigation in the direction of modifying the Aston accelerated abrasion tester has been carried out and a more aggressive head has been developed and is pending future research towards standardisation.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes an experimental study of the abrasion resistance of concrete at both the macro and micro levels. This is preceded by a review related to friction and wear, methods of test for assessing abrasion resistance, and factors influencing the abrasion resistance of concrete. A versatile test apparatus was developed to assess the abrasion resistance of concrete. This could be operated in three modes and a standardised procedure was established for all tests. A laboratory programme was undertaken to investigate the influence, on abrasion resistance, of three major factors - finishing techniques, curing regimes and surface treatments. The results clearly show that abrasion resistance was significantly affected by these factors, and tentative mechanisms were postulated to explain these observations. To substantiate these mechanisms, the concrete specimens from the macro-study were subjected to micro-structural investigation, using such techniques as 'Mercury Intrusion Forosimetry, Microhardness, Scanning Electron Microscopy, Petrography and Differential Thermal Analysis. The results of this programme clearly demonstrated that the abrasion resistance of concrete is primarily dependent on the microstructure of the concrete nearest to the surface. The viability of indirectly assessing the abrasion resistance was investigated using three non-destructive techniques - Ultrasonic Pulse Velocity, Schmidt Rebound Hardness, and the Initial Surface Absorption Test. The Initial Surface Absorption was found to be most sensitive to factors which were shown to have influenced the abrasion resistance of concrete. An extensive field investigation was also undertaken. The results were used to compare site and laboratorypractices, and the performance in the accelerated abrasion test with the service wear. From this study, criteria were developed for assessing the quality of concrete floor slabs in terms of abrasion resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three types of crushed rock aggregate were appraised, these being Carboniferous Sandstone, Magnesian Limestone and Jurassic Limestone. A comprehensive aggregate testing programme assessed the properties of these materials. Two series of specimen slabs were cast and power finished using recognised site procedures to assess firstly the influence of these aggregates as the coarse fraction, and secondly as the fine fraction. Each specimen slab was tested at 28 days under three regimes to simulate 2-body abrasion, 3-body abrasion and the effect of water on the abrasion of concrete. The abrasion resistance was measured using a recognised accelerated abrasion testing apparatus employing rotating steel wheels. Relationships between the aggregate and concrete properties and the abrasion resistance have been developed with the following properties being particularly important - Los Angeles Abrasion and grading of the coarse aggregate, hardness of the fine aggregate and water-cement ratio of the concrete. The sole use of cube strength as a measure of abrasion resistance has been shown to be unreliable by this work. A graphical method for predicting the potential abrasion resistance of concrete using various aggregate and concrete properties has been proposed. The effect of varying the proportion of low-grade aggregate in the mix has also been investigated. Possible mechanisms involved during abrasion have been discussed, including localised crushing and failure of the aggregate/paste bond. Aggregates from each of the groups were found to satisfy current specifications for direct finished concrete floors. This work strengthens the case for the increased use of low-grade aggregates in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT