497 resultados para Resinas fenolicas


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A alta incidência da cárie no Brasil vem despertando muito interesse para estudos que visem combatê-la. Tem-se observado a procura pela utilização de produtos naturais (plantas medicinais e resinas) que buscam atividade contra a principal bactéria causadora da cárie, que é o Streptococcus mutans, entre estas a geoprópolis (Melipona scutellaris). Todavia, apesar de os estudos mostrarem ação destes produtos de origem animal contra este micro-organismo, muitas vezes a baixa substantividade (bioadesão) deste material ao substrato determina uma baixa efetividade. Este estudo promoveu o desenvolvimento de um sistema líquido cristalino objetivando aumento da substantividade da própolis. Foram desenvolvidos sistemas constituídos por dispersão de quitosana, ácido oleico e álcool cetílico propoxilado e etoxilado (Procetyl® AWS), de acordo com o diagrama de fases ternário. Foram selecionadas 3 formulações, as quais foram submetidas a ensaios de microscopia de luz polarizada, análise de textura, bioadesão e reologia. Os resultados mostraram que os sistemas são viáveis para incorporação do extrato de própolis, aumentando sua bioadesão em ensaios in vitro

Relevância:

10.00% 10.00%

Publicador:

Resumo:

According to ABIPA (2009), Brazil is currently among the major producers of reconstituted wood panels, with one of the main factors for this condition, its climate and its large land area, which allows the cultivation of forests, which provide raw materials for these industries. To establish that market as power, Brazil has invested about R$ 1.3 billion in the last 10 years, yet designed an investment of 0.8 billion dollars over the next three years (BNDES, 2008). With the new investments in this segment, we expect a growth of about 66% in the resin consumption of urea-formaldehyde (GPC, 2009) which should also result in major investments by the companies producing this polymer. Currently employees are mainly three types of resins in the production industry panels, as follows: Urea-Formaldehyde Resin (R-UF), melamine-formaldehyde resin (R-MF) and Phenol-Formaldehyde Resin (R-FF). Especially the cost factor, the urea-formaldehyde resin is the most used by companies producing reconstituted wood panels. The UF-R is a polymer obtained by condensation of urea and formaldehyde reactors (usually batch type), characterized by being a thermosetting polymer which makes it very efficient for bonding wood composites. The urea-formaldehyde polymer, to present a quite complex, it becomes very difficult to predict the exact chain resulting in the process of condensation of urea with formaldehyde, so that a greater knowledge of its characteristics and methods for their characterization can result in greater control in industrial processes and subsequent decrease cost and improve the quality of reconstituted wood panels produced in Brazil

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the emergence of new filling materials with different properties and behaviors, the approach of endodontic treatment must be readjusted so that the appropriate result can be achieved. New endodontic sealers include methacrylate resin-based, plant resin-based and the evolution of epoxy-based sealers. This study verified the behavior of new materials that presents controversial results in the literature, about coronal bacterial leakage. That for, 56 single-rooted human teeth were prepared in the direction crown-apex and filled with gutta-percha points with taper of 4% using the single cone technique. Roots were divided randomly into 4 groups according to the sealer (Apexit Plus, AH Plus, EndoREZ and Polifil). After filling, the roots were incorporated in a leakage model, which upper chamber contained a suspension of Streptococcus mutans, and lower chamber a broth, leaving 3 mm of root apical portion immersed. Leakage was assessed for turbidity in lower chamber every day for 60 days. Survival analysis was performed using the nonparametric Kaplan- Meier method (p<0,05). All experimental groups presented leakage during the study’s period, however the maximum time achieve was 22 days. The medium time of leakage was: Apexit Plus 6,3 days, AH Plus 6,3 days and Polifil 5,1 days, but in EndoREZ all specimens infiltrated in the first day, presenting shorter capacity of impermeabilization compared to the other groups. Concluding that none of the sealers tested was able to prevent coronal bacterial leakage

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The monolithic glassy carbon is a carbonaceous material, isotropic, non graphitizable obtained by means of carbonization of resins up to 1000 °C. The good physicochemical properties make this material applied in several areas such as aerospace, medicine, electronics, chemistry, among others. It has generally been processed from the use of phenolic and furfuryl alcohol resins. These resins have high crosslink density and high fixed carbon content and are therefore widely applied in aerospace. The combination phenol / furfuryl alcohol resins search for obtaining the most suitable process for the glass-like carbon processing with phenolic resins currently available and of lower cost and easier to synthesize than the furfuryl alcohol resin. The main objective of this work is to obtain a phenol-furfuryl resin with high fixed carbon content combined with low porosity of the material. Different synthesis routes have been adopted along with thermal analysis techniques, FTIR and image analysis. The resin obtained through partial synthesis process presented the characteristics sought in this work

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nowadays technological trend is based on finding materials that could support low weight with satisfactory mechanical properties and for this reason composite material became a very attractive topic in research projects all over the world. Due to its heterogenic properties, this type of material shows scatter in mechanical test results, especially in cyclic loading. Therefore it is important to predict its fatigue strength behaviour by statistic analysis, once fatigue causes approximately 90% of the failure in structural components. The present work aimed to investigate the fatigue behaviour of the Twill/Cycom 890 composite, which is carbon fiber reinforced with polymeric resin as matrix and manufactured via RTM process (Resin Transfer Molding). All samples were tested in different tensile level in triplicate in order to associate these values. The statistical analysis was conducted with Two-Parameter Weibull Distribution and then evaluated the fatigue life results for the composite. Weibull graphics were used to determine the scale and shape parameters. The S-N curve for the Twill/Cycom composite was drawn and indicated the number of cycles to occur the first damages in this material. The probability of failure was associated with material reliability, as shown in graphics for the different tensile levels and fatigue life. In addition, the laminate was evaluated by ultrasonic inspection showing a regular impregnation. The fractographic analysis conducted by SEM showed failure mechanisms for polymeric composites associated to cyclic loadings ... (Complete abstract click electronic access below)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bee Apis mellifera has a great importance because it is the most economically valuable pollinator for crops worldwide, ensuring cross-pollination and increasing fruit yield. Moreover, agriculture increasingly develops chemicals to control weeds, fungi and insect pests to ensure productivity. Insecticides are used on a large scale in the state of São Paulo, in cultures of citrus for control of greening. Applications are usually made by aircraft and as a result of the effect derives a significant mortality is observed in apiaries near the plantations. Honey bees can get in contact with such chemical agent through their activities of water harvesting, plant resins, pollen and nectar. Intoxication resulting from this exposure can be lethal, which is easily detectable, or cause effects on the physiology and behavior of the insect. These, in turn are hardly detectable, such as paralysis, disorientation, behavioral changes, but can compromise the entire social structure of the colony, therefore aimed to study the effects of the insecticide Thiamethoxam behavior of honeybees A. mellifera. Newly emerged individuals and with 10 days of age were tested. Applications of 1 μL de Thiamethoxam, diluted in acetone, were made on the dorsal thorax with a microapplicator. Preliminarily, it was observed LD50 twenty four hours after topical treatment of Thiamethoxam. It was found that the LD50 for newly emerged honeybees is 8 ng/bee and for honeybees with 10 days of age is 18 ng/bee. The behaviors were analyzed 1 hour after application of insecticide at doses corresponding to LD50/100, LD50/50, LD50/10 and LD50, besides the control group. In the test reflex proboscis extension, there was impairment of behavior at doses of 8 and 18 ng/bee workers in newly emerged workers and 10 days of age, respectively. And in locomotor behavior was no change only at a dose of 18 ng/bee workers at 10 days of age... (Complete abstract click electronic access below)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the increasing demand for electricity, the retraining of transmission lines is necessary despite environmental restrictions and crossings in densely populated areas to build new transmission and distribution lines. Solution is reuse the existent cables, replacing the old conductor cables for new cables with higher capacity power transmission, and control of sag installed. The increasing demand for electrical power has increased the electric current on the wires and therefore, it must bear out temperatures of 150°C or more, without the risk of the increasing sag beyond the established limits. In the case of long crossings or densely populated areas, sag is due to high weight of the cable on clearance. The cable type determines the weight, sag, height and the towers dimensions, which are the items that most influence the investment of the transmission line. Hence, to reduce both cost of investment and maintenance of the line, the use of a lighter cable can reduce both number and the height of the towers, with financial return on short and long term. Therefore, in order to increase the amount of transmitted energy and reduce the number of built towers and sag, is recommended in the current work substitute the current core material (steel or aluminium) for alternatives alloys or new materials, in this case a composite, which has low density, elevated stiffness (elasticity module), thus apply the pultruded carbon fiber with epoxy resin as matrix systems and perform the study of the kinetics of degradation by thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC), according to their respective standards

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years a great worldwide interest has arisen for the development of new technologies that enable the use of products with less environmental impact. The replacement of synthetic fiber plants is a possibility very important because this fiber is renewable, biodegradable and few cost and cause less environmental impact. Given the above, this work proposes to develop polymeric composites of epoxy resin and study the behavior of these materials. Both, the epoxy resin used as matrix in the manufacture of sapegrass fiber composite, as tree composites formed by: epoxy/unidirectional sapegrass long fiber, 75% epoxy/25% short fiber, by volume, and 80% epoxy/20% short fiber, by volume, were characterized by bending, and the composites produced with short fibers random were inspected by Optical Microscopy and Acoustics Inspection (C-Scan). For the analysis of the sapegrass fiber morphology, composites 75% epoxy/25% short fiber (sheet chopped) and 80% epoxy/20% short fiber images were obtained by optical microscope and the adhesion between polymer/fiber was visualized. As results, the flexural strength of composites epoxy/unidirectional long fibers, 75% epoxy/25% short fiber and 80% epoxy/20% short fiber were 70.36 MPa, 21.26 MPa, 25.07 MPa, respectively. Being that composite showed that the best results was made up of long fibers, because it had a value of higher flexural strength than other composites analyzed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Supermarket plastic bags are produced by high density polyethylene (HDPE) and low density polyethylene (LDPE) resins. In Brazil, are produced annually around 150 plastic bags per capita. Disposed in landfills, the supermarket plastic bags prevent the passage of water by slowing the breakdown of biodegradable materials and hindering compaction of waste, according to their low degradability. This work investigated the biodegradation of PE bags containing additive oxo-biodegradable and bags without additives: buried in soil columns, exposed in a controlled environment and exposed to air. The analysis methods used to assess the changes brought in the bags with respect to microbial action and exposure time were weight loss, thickness measurement, infrared (FTIR), scanning electron microscopy (SEM) and contact angle. The results showed that the use of prodegradant agents such as oxobiodegradable additives in polyethylene bags, buried in soil for 270 days, was not efficient to accelerate the biodegradation by microorganisms. It seems that these additives have been more efficient to degrade the colored pigmentation of printed bags, under the influence of light and heat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After confirming the high specific mechanical properties of composite materials by scientific studies conducted over the last decades, one of the challenges of this new class of materials is the ability to achieve mass production at a more affordable cost, which has become indispensable. The Resin Transfer Molding (RTM) is an excellent method for manufacturing composite materials. Despite being a process widely used by international companies in the production of high performance structural composites, only a short time the national aviation industry has shown interest in implementing this type of processing to more complex structures and greater structural responsibility. In aeronautical projects, the reproducibility and the relative low cost of this process, several studies have been performed in Brazil for learning and perfecting this technique. This process is suitable for producing polymer components both simple as complex geometry, and allows to achieve consistent thickness, with high quality finish and without limiting range. Polymeric composite components for the high mechanical stress applications such as aircraft structures, satellites, etc., require a strict control of volume fractions of the composite constituents, beyond the knowledge of their mechanical and thermal properties. Therefore, in this experimental work degree study on the mechanical, thermal and of porosity composites processed by RTM processed characterization was performed. This characterization was performed targeting a possible aerospace application of this composite material. For the production of composites, process equipment (RTM RTM injector Radius 2100cc) was used. The processed carbono/epoxy composites were characterized via flexure tests mechanically and thermally analysis via DMA, DSC and TGA. To determine the volume fraction of fibers, the composite samples were analyzed via matrix digestion (ASTM D3171) ... (Complete abstract click electronic access below)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Triacrylate resins are widely used to fabricate 3D microstructures, photonic crystals and optical devices. These resins can be doped with photosensitive materials like Disperse Red 1 (DR1), an Azo dye that changes its molecular configuration from trans to cis (photoisomerisation) with variations in their optical absorption spectrum when irradiated with ultraviolet or visible light. The reversibility of this process is thermally activated and occurs when the molecule remains at dark. In this work was prepared a 1:1 mixture of ethoxylated-6-trimethylolpropane (SR499) and tris-2-hydroxyethyl-isocyanurate (SR368) triacrylate resins, plus photoinitiator Lucirin TPOL, forming a UV curable polymeric matrix doped with DR1. Thin films were deposited onto glass slides by spin-coating technique. The films showed photochromic effect when illuminated with a low power diode laser (450 nm and 50mW/cm2). This effect is reversible after sample is left in dark. Thermochromic effect was evaluated by optical absorption measurements in the range of 40 to 140oC, heating the samples in-situ

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A large part of hydraulic hoses is produced on a mandrel. The mandrel has longer length and circular profile being produced by extrusion of polyamide polymer, which in this case is imported, then the process is depending on the import process, which entails high shipping costs and fees. This work studies the production of recycled mandrel, using the mandrel that is out of dimensional to produce hoses. After the production of recycled mandrel mechanical tensile and hardness were performed both in the natural and recycled mandrel to compare them. It was observed that recycled mandrel presents the tensile properties and hardness superior to natural mandrel. Thus, this work will directly impact the company`s business ultimately reducing costs, reducing waste and reducing environmental impacts

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last decades it has been observed a substantial developing of the electrical energy demand in the societies all over the World. In consequence the electrical energy distribution companies are increasing the quantity of electrical energy through the electrical energy conductor cables, which had grown the sag in the towers of energy transmission. Furthermore, the construction of more transmission towers brings a lot of troubles due environmental protection laws. In this way, looking forward to increase the quantity of electrical energy transmitted through electrical cables conductors, reduce the need of constructing new transmission towers and the sag in them, we suggest in this work the replace of the traditional core of the conductors cables commonly used, made of steel, by a core made by a composite material, which one is made by carbon fibers pultruded with polymeric resins as matrix. In a order to evaluate if the resins more commonly used in structural composites can be applied as matrix to make possible to use the composite material as a core, we made carbon fibers systems pultruded with epoxy, phenolic and polyester resins as matrix and a mechanic and physic-chemistry characterization was done on the systems by Tensile and Poisson tests, differential sprobe calorimetry (DSC), thermogravimetric analysis (TGA) and Fourier transformed infrared spectroscopy (FTIR), following their correspondents standards

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A exposição in utero a xenoestrógenos pode aumentar o risco de neoplasias de natureza endócrina na vida adulta. O Bisfenol A (BPA), componente de resinas e plástico, considerado xenoestrógeno e desregulador endócrino, tem sido investigado pelos seus potenciais efeitos adversos para a saúde humana. Como a Genisteína e o Indol-3-Carbinol possuem propriedades que podem inibir neoplasias de natureza endócrina, é possível que também atuem modulando/modificando os efeitos causados pela exposição gestacional ao BPA. O presente projeto teve como objetivos: (1) Avaliar os efeitos da exposição gestacional ao Bisfenol - A (BPA) sobre a morfogênese do útero e ovários na prole de fêmeas Sprague-Dawley (SD) da geração F1; (2) Avaliar se a exposição gestacional a genisteína e ao indol-3-carbinol altera os efeitos do BPA sobre sobre a morfogênese do útero e ovários na geração F1 e (3) avaliar os efeitos da exposição ao BPA, e às associações BPA e genisteína, BPA e indol-3-carbinol em relação à susceptibilidade a carcinogênese induzida pela N-Metil-N-Nitrosuréia (MNU). Portanto, fêmeas prenhas da linhagem SD foram divididas em 7 grupos experimentais e expostas ao Bisfenol A (BPA) (25 ou 250 ug/kg p.c.) DG 10 até o DG 21 (Moral et al. 2008), além de ração basal ou ração contendo genisteína (250 mg/kg) ou indol-3-carbinol (2000 mg/kg) durante toda a gestação. Parte da prole Fêmeas SD foi sacrificada parte no Dia Pós-Natal (DPN) 21 e parte ao final da 25ª semana após iniciação ou não com a MNU. Ao DPN 21 os ovários e útero foram removidos para contagem de folículos e morfometria, respectivamente. A prole restante de fêmeas recebeu uma única dose de MNU (50 mg/kg) ou solução de NaCl (1 ml/kg) no DPN 51 e foi sacrificada na 25ª semana após a aplicação de MNU ou de NaCl. Ovários e útero foi removidos para análises histológicas, incluindo a determinação de lesões proliferativas ...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The weight of a vehicle has always been considered an extreme important factor, because it interferes in the performance, steering, consume, environmental impact, wear of components, among the others. Because of the new demand, consume reduction aim and gases emission increased the necessity to manufacture lighter vehicles, guaranteeing the complying with the gas emission international law. Besides the legal demand, the low weight will certainly be essential for the competitiveness for the next generation of vehicles. It is with this thinking the composite materials have been introduced in the automobilist industry, because those materials show an excellent relation of strength/weight, providing a reduction of consume and the increase of load capacity. Those factors justify the increase of interest of industry and the necessity of optimization of those materials and of their process. For this research, the field of application will be the Baja SAE Project, a project that is fully developed by engineering students, where they build a prototype single seat, off-road category, for use on hilly slopes with obstacle. This research aims to study two key components of the prototype are made of composite materials, analyzing all the processing. In addition, there is the analysis of the viability of this production parts to a Baja SAE vehicle, in order to increase their performance and reduce their weight without reducing the safety and robustness of the prototype. It was possible to achieve weight reduction of the steering subsystem with manufacturing the flywheel hybrid composite (carbon/glass) and the replacement of SAE 1010 steel by hybrid composite (carbon/aramid) in CVT box. The importance of this study is to obtain a good project for the vehicle of technical and scientific manner, contributing to the know-how to the team and providing a basis for optimization for upcoming projects