946 resultados para Regional population dynamics
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
This project was developed to fully assess the indoor air quality in archives and libraries from a fungal flora point of view. It uses classical methodologies such as traditional culture media – for the viable fungi – and modern molecular biology protocols, especially relevant to assess the non-viable fraction of the biological contaminants. Denaturing high-performance liquid chromatography (DHPLC) has emerged as an alternative to denaturing gradient gel electrophoresis (DGGE) and has already been applied to the study of a few bacterial communities. We propose the application of DHPLC to the study of fungal colonization on paper-based archive materials. This technology allows for the identification of each component of a mixture of fungi based on their genetic variation. In a highly complex mixture of microbial DNA this method can be used simply to study the population dynamics, and it also allows for sample fraction collection, which can, in many cases, be immediately sequenced, circumventing the need for cloning. Some examples of the methodological application are shown. Also applied is fragment length analysis for the study of mixed Candida samples. Both of these methods can later be applied in various fields, such as clinical and sand sample analysis. So far, the environmental analyses have been extremely useful to determine potentially pathogenic/toxinogenic fungi such as Stachybotrys sp., Aspergillus niger, Aspergillus fumigatus, and Fusarium sp. This work will hopefully lead to more accurate evaluation of environmental conditions for both human health and the preservation of documents.
Resumo:
Patellid limpets are ecologically important keystone grazers having a long history of overexploitation in the Macaronesian Archipelagos (NE Atlantic islands), where some species, such as Patella aspera, are under serious risk.[1, 2] Patella aspera is a protandric sequential hermaphrodite species with external fertilization, in which individuals start off as males but may undergo a sex reversal with age.[3] Hence, exploitation tends to focus on the larger females in the population as larger limpets (predominantly females) are selectively removed. Despite conservation legislation in Canaries, Madeira and Azores, limpets are under severe pressure and few individuals survive long enough to become females, a phenomenon that severely restricts the effective population size.[4] New conservation actions for the protection and sustainable use of limpets in Macaronesian Archipelagos are urgently needed and should be based on a multidisciplinary framework based on knowledge of the population dynamics and connectivity of this species.
Resumo:
In the present work, we studied a common outbreaking Lepidoptera species in Portuguese pine stands – Thaumetopoea pityocampa (Den. & Schiff.) - and one of its potential predators – Parus major (L.). The population dynamics of the immature stages of the Lepidoptera was studied in several types of Pinus pinaster (Aiton) plantations in three different areas: Setúbal Peninsula, Abrantes and National Pine Forest of Leiria. Location and plantation structure was the most important factors determining population density of T. pityocampa. Setubal and Abrantes was highly susceptible to attacks by the Lepidoptera, whereas Leiria had lower densities. Young and homogeneous pine stands was more susceptible to attacks than older and more heterogeneous pines stands. However, a desynchronized population of T. pityocampa, in which the larvae develops during summer instead of during winter, reached high densities also in Leiria. The impact of several mortality factors and climatic conditions on the immature stages of the insect (eggs and larvae), in normal and desynchronized populations are discussed, as well as possible evolutionary implications of the sudden appearance of the new version of T. pityocampa. The break of the pupa diapause and adult emergence times the annual life cycle of this insect. Adults from the desynchronized population emerged earlier than adults from the normal population, which in turn determined the change in the larvae development period. Different factors, potentially affecting the timing of adult emergence in both normal and abnormal populations are also discussed. To study P. Major, nest-boxes were placed in the areas of Setúbal and Leiria and they were monitored during three seasons. The nest-boxes increased the density of breeding and wintering birds in the studied pine plantations, indicating that a lack of natural holes are in fact a limiting factor for this populations. The earliest breeding start for this species was recorded in my study area, indicating that Portuguese coastal pines provide good breeding conditions earlier than in other areas of Europe and North Africa. This leads to an overlap between the end of the larvae stage of T. pityocampa and the beginning of the breeding season of P. major. Key-words: Thaumetopoea pityocampa, Parus major, Pinus pinaster, population dynamics, Portugal.
Resumo:
A new method is proposed to control delayed transitions towards extinction in single population theoretical models with discrete time undergoing saddle-node bifurcations. The control method takes advantage of the delaying properties of the saddle remnant arising after the bifurcation, and allows to sustain populations indefinitely. Our method, which is shown to work for deterministic and stochastic systems, could generally be applied to avoid transitions tied to one-dimensional maps after saddle-node bifurcations.
Resumo:
Density-dependent effects, both positive or negative, can have an important impact on the population dynamics of species by modifying their population per-capita growth rates. An important type of such density-dependent factors is given by the so-called Allee effects, widely studied in theoretical and field population biology. In this study, we analyze two discrete single population models with overcompensating density-dependence and Allee effects due to predator saturation and mating limitation using symbolic dynamics theory. We focus on the scenarios of persistence and bistability, in which the species dynamics can be chaotic. For the chaotic regimes, we compute the topological entropy as well as the Lyapunov exponent under ecological key parameters and different initial conditions. We also provide co-dimension two bifurcation diagrams for both systems computing the periods of the orbits, also characterizing the period-ordering routes toward the boundary crisis responsible for species extinction via transient chaos. Our results show that the topological entropy increases as we approach to the parametric regions involving transient chaos, being maximum when the full shift R(L)(infinity) occurs, and the system enters into the essential extinction regime. Finally, we characterize analytically, using a complex variable approach, and numerically the inverse square-root scaling law arising in the vicinity of a saddle-node bifurcation responsible for the extinction scenario in the two studied models. The results are discussed in the context of species fragility under differential Allee effects. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The population dynamics and the prevalence of chagasic infection of 352 dogs living in 108 rural houses infested by triatomines were studied. The region was divided into three sections according to increasing distances to an urban area. Each animal was identified by means of its particular characteristics and built, and its owners gave information about its habits. By means of xenodiagnosis, serology and ECG studies, prevalences of infection, parasitological-serological correlation, percentage of altered electrocardiographic outlines and percentage of houses with parasitemic dogs, were determined. The rural area showed a characteristic T. cruzi infection pattern and differences in the canine population parameters with respect to the other areas were observed: a higher proportion of puppies than adult dogs, a more sedentary population, higher prevalences of infection, as measured by xenodiagnosis, in dogs, and the highest proportion of bedroom insects infected with T. cruzi. It is assumed that the sedentary characteristics of the human population in that rural area impinge in the blood offer to the triatomine population, and the high percentage of parasitemic dogs of the area, contribute to the rise of "kissing ougs" infected with T. cruzi found in bedrooms.
Resumo:
Population dynamics have been attracting interest since many years. Among the considered models, the Richards’ equations remain one of the most popular to describe biological growth processes. On the other hand, Allee effect is currently a major focus of ecological research, which occurs when positive density dependence dominates at low densities. In this chapter, we propose the dynamical study of classes of functions based on Richards’ models describing the existence or not of Allee effect. We investigate bifurcation structures in generalized Richards’ functions and we look for the conditions in the (β, r) parameter plane for the existence of a weak Allee effect region. We show that the existence of this region is related with the existence of a dovetail structure. When the Allee limit varies, the weak Allee effect region disappears when the dovetail structure also disappears. Consequently, we deduce the transition from the weak Allee effect to no Allee effect to this family of functions. To support our analysis, we present fold and flip bifurcation curves and numerical simulations of several bifurcation diagrams.
Resumo:
This work concerns dynamics and bifurcations properties of a new class of continuous-defined one-dimensional maps: Tsoularis-Wallace's functions. This family of functions naturally incorporates a major focus of ecological research: the Allee effect. We provide a necessary condition for the occurrence of this phenomenon of extinction. To establish this result we introduce the notions of Allee's functions, Allee's effect region and Allee's bifurcation curve. Another central point of our investigation is the study of bifurcation structures for this class of functions, in a three-dimensional parameter space. We verified that under some sufficient conditions, Tsoularis-Wallace's functions have particular bifurcation structures: the big bang and the double big bang bifurcations of the so-called "box-within-a-box" type. The double big bang bifurcations are related to the existence of flip codimension-2 points. Moreover, it is verified that these bifurcation cascades converge to different big bang bifurcation curves, where for the corresponding parameter values are associated distinct kinds of boxes. This work contributes to clarify the big bang bifurcation analysis for continuous maps and understand their relationship with explosion birth and extinction phenomena.
Resumo:
An American cutaneous leishmaniasis outbreak, with cases clustering during 1993 in Tartagal city, Salta, was reported. The outbreak involved 102 individuals, 43.1% of them with multiple ulcers. Age (mean: 33 years old) and sex distribution of cases (74.5% males), as well as working activity (70 forest-related), support the hypothesis of classical forest transmission leishmaniasis, despite the fact that the place of permanent residence was in periurban Tartagal. Moreover, during July, sandflies were only collected from one of the 'deforestation areas'. Lutzomyia intermedia was the single species of the 491 phlebotomines captured, reinforcing the vector incrimination of this species. Most infections must have been acquired during the fall (April to June), a pattern consistent with previous sandfly population dynamics data. Based on the epidemiological and entomological results, it was advised not to do any vector-targeted periurban control measures during July. Further studies should be done to assess if the high rate of multiple lesions was due to parasite factors or to infective vector density factors.
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Ciências do Ambiente pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecn
Resumo:
Irrigation schemes and dams have posed a great concern on public health systems of several countries, mainly in the tropics. The focus of the present review is to elucidate the different ways how these human interventions may have an effect on population dynamics of anopheline mosquitoes and hence, how local malaria transmission patterns may be changed. We discuss different studies within the three main tropical and sub-tropical regions (namely Africa, Asia and the Pacific and the Americas). Factors such as pre-human impact malaria epidemiological patterns, control measures, demographic movements, human behaviour and local Anopheles bionomics would determine if the implementation of an irrigation scheme or a dam will have negative effects on human health. Some examples of successful implementation of control measures in such settings are presented. The use of Geographic Information System as a powerful tool to assist on the study and control of malaria in these scenarios is also highlighted.
Resumo:
The situation of rabies in America is complex: rabies in dogs has decreased dramatically, but bats are increasingly recognized as natural reservoirs of other rabies variants. Here, bat species known to be rabies-positive with different antigenic variants, are summarized in relation to bat conservation status across Latin America. Rabies virus is widespread in Latin American bat species, 22.5%75 of bat species have been confirmed as rabies-positive. Most bat species found rabies positive are classified by the International Union for Conservation of Nature as “Least Concern”. According to diet type, insectivorous bats had the most species known as rabies reservoirs, while in proportion hematophagous bats were the most important. Research at coarse spatial scales must strive to understand rabies ecology; basic information on distribution and population dynamics of many Latin American and Caribbean bat species is needed; and detailed information on effects of landscape change in driving bat-borne rabies outbreaks remains unassessed. Finally, integrated approaches including public health, ecology, and conservation biology are needed to understand and prevent emergent diseases in bats.
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
Introduction In Triatominae, reproductive efficiency is an important factor influencing population dynamics, and a useful parameter in measuring a species' epidemiological significance as a vector of Trypanosoma cruzi (Chagas, 1909). The reproductive efficiency of triatomines is affected by food availability; hence, we measured and compared the effects of feeding frequency on the reproductive parameters of Triatoma patagonica (Del Ponte, 1929) and Triatoma infestans (Klug, 1934), and the effects of starvation on T. patagonica. Methods Couples from both species were fed weekly, or every 3 weeks; in addition, females in couples of T. patagonica were not fed. Each couple was observed weekly and reproductive efficiency was assessed on the following parameters: fecundity (eggs/female), fertility (eggs hatched/eggs laid), initiation and end of oviposition, initiation of mating, number of matings/week, and number of reproductive weeks. Relative meal size index (RMS), blood consumption index (CI), and E values (eggs/mg blood) were also calculated. Results Changes in feeding frequency affected the reproductive parameters of T. patagonica only, with a decrease in fecundity and number of reproductive weeks for those fed every 3 weeks, or not fed. The reproductive period, RMS index, and CI were lower for T. patagonica than T. infestans. However, despite the lower fecundity of T. patagonica, this species required less blood to produce eggs, with an E values of 2 compared to 2.94 for T. infestans. Conclusions Our results suggest that the differences in fecundity observed between species reflect the availability of food in their natural ecotopes.