929 resultados para Rectifying Potassium Channels


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yerba mate (Ilex paraguariensis) is a tree species native to the subtropical regions of South America, and is found in Brazil predominantly in the southern region. Despite the historical importance in this region, so far, studies on crop nutrition to improve yields are scarce. Thus, this study evaluated the effect of potassium rates on K soil availability, and the yield and nutritional status of yerba mate. The experiment was conducted in São Mateus do Sul, State of Paraná, on a Humox soil, where K2O rates of 0, 20, 40, 80, 160, and 320 kg ha-1 were tested on 7-year-old plantations. The experiment was harvested 24 months after installation by removing approximately 95 % of the canopy that had sprouted from the previous harvest. The soil was evaluated for K availability in the layers 0-10, 0-20, 10-20, and 20-40 cm. The plant parts leaf fresh matter (LM), twigs (TW), thick branches (BR) and commercial yerba mate (COYM), i.e., LM+TW, were analyzed. In addition, the relationship between fresh matter/dry matter (FM/DM) and K concentration in LM, AG and BR were evaluated. The fertilization increased K availability in all evaluated soil layers, indicating good mobility of the nutrient even at low rates. Yerba mate responded positively to increasing K2O rates with higher yields of all harvested components. The crop proved K-demanding, with a maximum COYM yield of 28.5 t ha-1, when 72 mg dm-3 K was available in the 0-20 cm layer. Yerba mate in the plant production stage requires soil K availability at medium to high level; in clayey soil with low K availability, a rate of 300 kg ha-1 K2O should be applied at 24 month intervals to obtain high yields. A leaf K concentration of 16.0 g ha-1 is suitable for yerba mate in the growth stage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potassium participates in the essential processes in plant physiology, however, the effects of K sources on plant metabolism have been little studied. Also, in certain cases, K sources and concentrations may cause undesirable effects, e.g., soil salinization. The objective was to evaluate the effect of K sources and levels on the enzyme activity of the antioxidant system and protein content in eggplant (Solanum melongena L.) leaves and to determine the most suitable K sources for these physiological characteristics. The experiment was conducted in randomized blocks, in a 2 × 4 factorial design, consisting of two K sources (KCl and K2SO4) and rates (250, 500, 750, and 1000 kg ha-1 K2O), with four replications. The following variables were evaluated: plant height, number of leaves per plant, superoxide dismutase (SOD), catalase (CAT), and leaf protein content. There was an increase in CAT activity with increasing K levels until 30 days after transplanting (DAT), when K2SO4 was applied and until 60 DAT, when KCl was used; after this period, the enzyme activity decreased under both sources. The activity of SOD increased in the presence of KCl, but was reduced with the application of K2SO4. For both K sources, increasing rates reduced the protein content and number of leaves per plant, and this reduction was greater under KCl application. Thus it was concluded that KCl tends more strongly to salinize the soil than K2SO4. Both for KCl and for K2SO4, the increasing rates adversely affected the activities of CAT and SOD and the levels of leaf protein in eggplant. The potential of KCl to reduce the enzyme activity of SOD and CAT, leaf protein content and plant growth of eggplant was stronger than that of K2SO4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We perform a three-dimensional study of steady state viscous fingers that develop in linear channels. By means of a three-dimensional lattice-Boltzmann scheme that mimics the full macroscopic equations of motion of the fluid momentum and order parameter, we study the effect of the thickness of the channel in two cases. First, for total displacement of the fluids in the channel thickness direction, we find that the steady state finger is effectively two-dimensional and that previous two-dimensional results can be recovered by taking into account the effect of a curved meniscus across the channel thickness as a contribution to surface stresses. Second, when a thin film develops in the channel thickness direction, the finger narrows with increasing channel aspect ratio in agreement with experimental results. The effect of the thin film renders the problem three-dimensional and results deviate from the two-dimensional prediction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the forced displacement of a fluid-fluid interface in a three-dimensional channel formed by two parallel solid plates. Using a lattice-Boltzmann method, we study situations in which a slip velocity arises from diffusion effects near the contact line. The difference between the slip and channel velocities determines whether the interface advances as a meniscus or a thin film of fluid is left adhered to the plates. We find that this effect is controlled by the capillary and Péclet numbers. We estimate the crossover from a meniscus to a thin film and find good agreement with numerical results. The penetration regime is examined in the steady state. We find that the occupation fraction of the advancing finger relative to the channel thickness is controlled by the capillary number and the viscosity contrast between the fluids. For high viscosity contrast, lattice-Boltzmann results agree with previous results. For zero viscosity contrast, we observe remarkably narrow fingers. The shape of the finger is found to be universal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT The economic exploitation of macaw palm [Acrocomia aculeate(Jacq.) Lodd. ex Mart.] is currently in transition, from extractivism to agricultural cultivation, thus requiring studies on the fertilization of the crop. This study evaluated the response of three genotypes of macaw palm to increasing rates of nitrogen and potassium, grown in the field until the 2nd year and to establish reference contents of mineral nutrients in the leaf. The experiment was a split-plot randomized block design with five main treatments (N and K rates) and three secondary treatments (genotypes), with three replications, each plot containing three plants. Plant height, leaf number, vigor, and nutrient contents in leaf tissues were evaluated at the end of 2nd year of cultivation. Differential responses were observed among genotypes, indicating that some genotypes are more efficient in the use of mineral inputs. There was a differentiated and positive response to increasing side-dressed N and K rates in the vegetative development of macaw genotypes until the 2nd year of field cultivation, indicating variability in the species in terms of nutrient use efficiency. The N and K fertilization rate corresponding to 360 g N + 480 g K2O per plant, in four split applications over the two years of cultivation, was insufficient to induce maximum vegetative development in the three macaw genotypes. There was no variation in macro- and micronutrient contents in leaf dry matter of the three macaw genotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT Organic acids present in organic matter and, or, exudates by microorganisms and plants can increase the liberation of potassium present in minerals. The objective of this study was to characterize the residue from ornamental rocks and evaluate the release of K from these residues after the application of organic acids. The experiment was conducted under laboratory conditions and followed a 2 × 3 × 5 factorial design with three replicates. The studied factors were: two organic acids (citric acid and malic acid), three ornamental rock residues (R1, R2 and R3) and five organic acid rates (0, 5, 10, 20 and 40 mmol L-1). After agitation, K concentrations were determined in the equilibrium solution. Successive extractions were performed (1, 5, 10, 15, 30 and 60 days after the start of the experiment). The organic acids used (citric and malic) promoted the release of up to 4.86 and 4.34 % of the total K contained in the residue, respectively, reinforcing the role of organic acids in the weathering of minerals and in providing K to the soil. The K quantities were, on average, 6.1 % higher when extracted with citric acid compared to malic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT Information on fertilizer management for cotton in narrow-row cropping system is scarce; therefore, studies are needed to improve nutrient stewardship for such systems. The aim of this study was to evaluate the effects of nitrogen and potassium application on yield and fiber quality of cotton under a narrow-row system. A field trial was carried out for three years, where the treatments were set up in an incomplete factorial arrangement [(4 × 4) + 1] under a randomized block design, with four N rates (20, 40, 60, and 80 kg ha-1), four K2O rates (0, 40, 80, and 120 kg ha-1), and one control (no N or K2O), for a total of 17 treatments, with four replicates. Urea and potassium chloride were applied on the soil surface 20 days after crop emergence. Varieties used were FMT 701 (2009/2010 and 2010/2011) and FMT 709 (2011/2012). Cotton yield and fiber quality parameters were measured. In the narrow-row cropping system, cotton lint yield was positively affected by N and K application. Cotton yield in relation to K applications was not dependent on N rates. Potassium application increased the micronaire index and fiber resistance, whereas high N rates reduced fiber resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acid-sensing ion channels (ASICs) are non-voltage-gated sodium channels activated by an extracellular acidification. They are widely expressed in neurons of the central and peripheral nervous system. ASICs have a role in learning, the expression of fear, in neuronal death after cerebral ischemia, and in pain sensation. Tissue damage leads to the release of inflammatory mediators. There is a subpopulation of sensory neurons which are able to release the neuropeptides calcitonin gene-related peptide (CGRP) and substance P (SP). Neurogenic inflammation refers to the process whereby peripheral release of the neuropeptides CGRP and SP induces vasodilation and extravasation of plasma proteins, respectively. Our laboratory has previously shown that calcium-permeable homomeric ASIC1a channels are present in a majority of CGRP- or SP-expressing small diameter sensory neurons. In the first part of my thesis, we tested the hypothesis that a local acidification can produce an ASIC-mediated calcium-dependant neuropeptide secretion. We have first verified the co-expression of ASICs and CGRP/SP using immunochemistry and in-situ hybridization on dissociated rat dorsal root ganglion (DRG) neurons. We found that most CGRP/SP-positive neurons also expressed ASIC1a and ASIC3 subunits. Calcium imaging experiments with Fura-2 dye showed that an extracellular acidification can induce an increase of intracellular Ca2+ concentration, which is essential for secretion. This increase of intracellular Ca2+ concentration is, at least in some cells, ASIC-dependent, as it can be prevented by amiloride, an ASIC antagonist, and by Psalmotoxin (PcTx1), a specific ASIC1a antagonist. We identified a sub-population of neurons whose acid-induced Ca2+ entry was completely abolished by amiloride, an amiloride-resistant population which does not express ASICs, but rather another acid-sensing channel, possibly transient receptor potential vanilloïde 1 (TRPV1), and a population expressing both H+-gated channel types. Voltage-gated calcium channels (Cavs) may also mediate Ca2+ entry. Co-application of the Cavs inhibitors (ω-conotoxin MVIIC, Mibefradil and Nifedipine) reduced the Ca2+ increase in neurons expressing ASICs during an acidification to pH 6. This indicates that ASICs can depolarise the neuron and activate Cavs. Homomeric ASIC1a are Ca2+-permeable and allow a direct entry of Ca2+ into the cell; other ASICs mediate an indirect entry of Ca2+ by inducing a membrane depolarisation that activates Cavs. We showed with a secretion assay that CGRP secretion can be induced by extracellular acidification in cultured rat DRG neurons. Amiloride and PcTx1 were not able to inhibit the secretion at acidic pH, but BCTC, a TRPV1 inhibitor was able to decrease the secretion induced by an extracellular acidification in our in vitro secretion assay. In conclusion, these results show that in DRG neurons a mild extracellular acidification can induce a calcium-dependent neuropeptide secretion. Even if our data show that ASICs can mediate an increase of intracellular Ca2+ concentration, this appears not to be sufficient to trigger neuropeptide secretion. TRPV1, a calcium channel whose activation induces a sustained current - in contrary of ASICs - played in our experimental conditions a predominant role in neurosecretion. In the second part of my thesis, we focused on the role of ASICs in neuropathic pain. We used the spared nerve injury (SNI) model which consists in a nerve injury that induces symptoms of neuropathic pain such as mechanical allodynia. We have previously shown that the SNI model modifies ASIC currents in dissociated rat DRG neurons. We hypothesized that ASICs could play a role in the development of mechanical allodynia. The SNI model was performed on ASIC1a, -2, and -3 knock-out mice and wild type littermates. We measured mechanical allodynia on these mice with calibrated von Frey filaments. There were no differences between the wild-type and the ASIC1, or ASIC2 knockout mice. ASIC3 null mice were less sensitive than wild type mice at 21 day after SNI, indicating a role for ASIC3. Finally, to investigate other possible roles of ASICs in the perception of the environment, we measured the baseline heat responses. We used two different models; the tail flick model and the hot plate model. ASIC1a null mice showed increased thermal allodynia behaviour in the hot plate test at three different temperatures (49, 52, 55°C) compared to their wild type littermates. On the contrary, ASIC2 null mice showed reduced thermal allodynia behaviour in the hot plate test compared to their wild type littermates at the three same temperatures. We conclude that ASIC1a and ASIC2 in mice can play a role in temperature sensing. It is currently not understood how ASICs are involved in temperature sensing and what the reason for the opposed effects in the two knockout models is.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recently discovered epithelial sodium channel (ENaC)/degenerin (DEG) gene family encodes sodium channels involved in various cell functions in metazoans. Subfamilies found in invertebrates or mammals are functionally distinct. The degenerins in Caenorhabditis elegans participate in mechanotransduction in neuronal cells, FaNaC in snails is a ligand-gated channel activated by neuropeptides, and the Drosophila subfamily is expressed in gonads and neurons. In mammals, ENaC mediates Na+ transport in epithelia and is essential for sodium homeostasis. The ASIC genes encode proton-gated cation channels in both the central and peripheral nervous system that could be involved in pain transduction. This review summarizes the physiological roles of the different channels belonging to this family, their biophysical and pharmacological characteristics, and the emerging knowledge of their molecular structure. Although functionally different, the ENaC/DEG family members share functional domains that are involved in the control of channel activity and in the formation of the pore. The functional heterogeneity among the members of the ENaC/DEG channel family provides a unique opportunity to address the molecular basis of basic channel functions such as activation by ligands, mechanotransduction, ionic selectivity, or block by pharmacological ligands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among all sports, football is the one that saw the largest diffusion during the 20th century. Professional leagues exist on all continents and professional footballers are constantly on the move, trying to reach the wealthiest European clubs. Using the football players' market as an example, this article highlights some key features of economic globalization: the new international division of labour, the ever increasing role played by intermediaries to bind the demand and supply of work on a transnational scale, and the setting up of spatially fragmented trade circuits. These processes form the basis for the creation of a global market of footballers in which clubs and championships play complementary roles and are more than ever functionally integrated beyond national borders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Natrium- ja kaliumlannoituksen vaikutus timotein ravintoarvoon

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transepithelial sodium transport via alveolar epithelial Na(+) channels (ENaC) and Na(+),K(+)-ATPase constitutes the driving force for removal of alveolar edema fluid. Alveolar hypoxia associated with pulmonary edema may impair ENaC activity and alveolar Na(+) absorption through a decrease of ENaC subunit expression at the apical membrane of alveolar epithelial cells (AECs). Here, we investigated the mechanism(s) involved in this process in vivo in the β-Liddle mouse strain mice carrying a truncation of β-ENaC C-terminus abolishing the interaction between β-ENaC and the ubiquitin protein-ligase Nedd4-2 that targets the channel for endocytosis and degradation and in vitro in rat AECs. Hypoxia (8% O2 for 24 h) reduced amiloride-sensitive alveolar fluid clearance by 69% in wild-type mice but had no effect in homozygous mutated β-Liddle littermates. In vitro, acute exposure of AECs to hypoxia (0.5-3% O2 for 1-6 h) rapidly decreased transepithelial Na(+) transport as assessed by equivalent short-circuit current Ieq and the amiloride-sensitive component of Na(+) current across the apical membrane, reflecting ENaC activity. Hypoxia induced a decrease of ENaC subunit expression in the apical membrane of AECs with no change in intracellular expression and induced a 2-fold increase in α-ENaC polyubiquitination. Hypoxic inhibition of amiloride-sensitive Ieq was fully prevented by preincubation with the proteasome inhibitors MG132 and lactacystin or with the antioxidant N-acetyl-cysteine. Our data strongly suggest that Nedd4-2-mediated ubiquitination of ENaC leading to endocytosis and degradation of apical Na(+) channels is a key feature of hypoxia-induced inhibition of transepithelial alveolar Na(+) transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of K2O (0, 40, 80, 120 kg ha-1) at varying rates of N application (0, 30, 60 kg ha-1) at planting, on panicle blast (Pyricularia grisea (Cooke) Sacc.) was studied in a field experiment conducted during three consecutive years with the upland rice cultivar Douradão. Panicle blast severity decreased with increasing rates of potassium in the absence of nitrogen (N0). The relationship between panicle blast and K rates was quadratic at 30 kg ha-1 of nitrogen. Significant response to K fertilization was not obtained at 60 kg ha-1 of nitrogen in relation to panicle blast severity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapport de synthèse : Implication des canaux Ca2+ de type L et des canaux KATP dans la protection induite par pacing dans un modèle de coeur embryonnaire soumis à l'anoxieréoxygénation. Contexte et but : le canal Ca2+ de type L, les canaux K+ du sarcolemme (sarcKatp) et de la mitochondrie (mitoKatp) interviennent dans le préconditionnement ischémique ou pharmacologique du myocarde. La présente étude cherche à déterminer dans quelle mesure ces canaux peuvent aussi jouer un rôle dans la cardioprotection induite par pacing. Méthodes :des coeurs d'embryons de poulet âgés de 4 jours ont été soumis in ovo à un pacing durant 12 heures, en pratiquant une stimulation électrique ventriculaire asynchrone intermittente à 110% de la fréquence cardiaque intrinsèque. Les coeurs contrôles (sham) et les coeurs stimulés ont ensuite été soumis in vitro à une période d'anoxie de 30 minutes, suivie d'une réoxygénation de 60 minutes. Les coeurs ont été exposés à l'agoniste du canal Ca2+ de type L (Bay-K-8644, BAY-K) ou à son bloqueur (vérapamil, VERAP), à l'antagoniste non sélectif des canaux KATP (glibenclamide, GLIB), ainsi qu'à l'agoniste du canal mitoKATP (diazoxide, DIAZO), ou à son antagoniste (5-hydroxydécanoate, 5-HD). L'électrocardiogramme, le délai électro-mécanique (DEM) reflétant le couplage excitation-contraction, ainsi que la contractilité myocardique ont été systématiquement déterminés pendant l'anoxieréoxygénation. Résultats : en normoxie, la fréquence cardiaque, l'intervalle QT, la conduction atrioventriculaire, le DEM et le raccourcissement ventriculaires étaient identiques dans les coeurs sham et les coeurs stimulés. Par contre, au cours de la réoxygénation post-anoxique, les arythmies cessaient plus précocément et le DEM ventriculaire retrouvait plus rapidement son niveau initial dans les coeurs stimulés, comparés aux sham. Dans les coeurs sham, BAY-K (mais pas le VERAP), DIAZO (mais pas le 5HD) ou GLIB accéléraient la récupération du DEM ventriculaire, reproduisant ainsi la protection induite par le pacing. En revanche, aucun de ces agents n'affectait la récupération des cceurs stimulés. Conclusion : un pacing ventriculaire chronique et intermittent délivré à une fréquence quasi physiologique améliore la tolérance myocardique à une anoxie-réoxygénation ultérieure. L'approche pharmacologique amontré qu'une activation discrète du canal Ca2+ de type L, une inhibition du canal sarcKATP et/ou une ouverture du canal mitoKATP peuvent contribuer à la cardioprotection induite par le pacing.