975 resultados para Receptor tyrosine kinase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activation of macrophages by bacterial lipopolysaccharide (LPS) induces transcription of genes that encode for proinflammatory regulators of the immune response. Previous work has suggested that activation of the transcription factor activator protein 1 (AP-1) is one LPS-induced event that mediates this response. Consistent with this notion, we found that LPS stimulated AP-1-mediated transcription of a transfected reporter gene in the murine macrophage cell line RAW 264.7. As AP-1 activity is regulated in part by activation of the c-Jun N-terminal kinase (JNK), which phosphorylates and subsequently increases the transcriptional activity of c-Jun, we examined whether LPS treatment of macrophages resulted in activation of this kinase. LPS treatment of RAW 264.7 cells, murine bone marrow-derived macrophages, and the human monocyte cell line THP-1 resulted in rapid activation of the p46 and p54 isoforms of JNK. Treatment with wild-type and rough mutant forms of LPS and synthetic lipid A resulted in JNK activation, while pretreatment with the tyrosine kinase inhibitor herbimycin A inhibited this response. Binding of LPS-LPS binding protein (LBP) complexes to CD14, a surface receptor that mediates many LPS responses, was found to be crucial, as pretreatment of THP-1 cells with the monoclonal antibody 60b, which blocks this binding, inhibited JNK activation. These results suggest that LPS activation of JNK in monocyte/macrophage cells is a CD14- and protein tyrosine phosphorylation-dependent event that may mediate the early activation of AP-1 in regulating LPS-triggered gene induction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In hunting for unknown genes on the human X chromosome, we identified a cDNA in Xq28 encoding a transmembrane protein (SEX) of 1871 amino acids. SEX shares significant homology with the extracellular domain of the receptors encoded by the oncogenes MET, RON, and SEA [hepatocyte growth factor (HGF) receptor family]. Further screenings of cDNA libraries identified three additional sequences closely related to SEX: these were named SEP, OCT, and NOV and were located on human chromosomes 3p, 1, and 3q, respectively. The proteins encoded by these genes contain large cytoplasmic domains characterized by a distinctive highly conserved sequence (SEX domain). Northern blot analysis revealed different expression of the SEX family of genes in fetal tissues, with SEX, OCT, and NOV predominantly expressed in brain, and SEP expressed at highest levels in kidney. In situ hybridization analysis revealed that SEX has a distinctive pattern of expression in the developing nervous system of the mouse, where it is found in postmitotic neurons from the first stages of neuronal differentiation (9.5 day postcoitus). The SEX protein (220 kDa) is glycosylated and exposed at the cell surface. Unlike the receptors of the HGF family, p220SEX, a MET-SEX chimera or a constitutively dimerized TPR-SEX does not show tyrosine kinase activity. These data define a gene family (SEX family) involved in the development of neural and epithelial tissues, which encodes putative receptors with unexpected enzymatic or binding properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interferon tau (IFN tau), originally identified as a pregnancy recognition hormone, is a type I interferon that is related to the various IFN alpha species (IFN alpha s). Ovine IFN tau has antiviral activity similar to that of human IFN alpha A on the Madin-Darby bovine kidney (MDBK) cell line and is equally effective in inhibiting cell proliferation. In this study, IFN tau was found to differ from IFN alpha A in that is was > 30-fold less toxic to MDBK cells at high concentrations. Excess IFN tau did not block the cytotoxicity of IFN alpha A on MDBK cells, suggesting that these two type I IFNs recognize the type I IFN receptor differently on these cells. In direct binding studies, 125I-IFN tau had a Kd of 3.90 x 10(-10) M for receptor on MDBK cells, whereas that of 125I-IFN alpha A was 4.45 x 10(-11) M. Consistent with the higher binding affinity, IFN alpha A was severalfold more effective than IFN tau in competitive binding against 125I-IFN tau to receptor on MDBK cells. Paradoxically, the two IFNs had similar specific antiviral activities on MDBK cells. However, maximal IFN antiviral activity required only fractional occupancy of receptors, whereas toxicity was associated with maximal receptor occupancy. Hence, IFN alpha A, with the higher binding affinity, was more toxic than IFN tau. The IFNs were similar in inducing the specific phosphorylation of the type I receptor-associated tyrosine kinase Tyk2, and the transcription factors Stat1 alpha and Stat2, suggesting that phosphorylation of these signal transduction proteins is not involved in the cellular toxicity associated with type I IFNs. Experiments using synthetic peptides suggest that differences in the interaction at the N terminal of IFN tau and IFN alpha with the type I receptor complex contribute significantly to differences in high-affinity equilibrium binding of these molecules. It is postulated that such a differential recognition of the receptor is responsible for the similar antiviral but different cytotoxic effects of these IFNs. Moreover, these data imply that receptors are "spare'' with respect to certain biological properties, and we speculate that IFNs may induce a concentration-dependent selective association of receptor subunits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Whole-cell patch-clamp recordings and single-cell Ca2+ measurements were used to study the control of Ca2+ entry through the Ca2+ release-activated Ca2+ influx pathway (ICRAC) in rat basophilic leukemia cells. When intracellular inositol 1,4,5-trisphosphate (InsP3)-sensitive stores were depleted by dialyzing cells with high concentrations of InsP3, ICRAC inactivated only slightly in the absence of ATP. Inclusion of ATP accelerated inactivation 2-fold. The inactivation was increased further by the ATP analogue adenosine 5'-[gamma-thio]triphosphate, which is readily used by protein kinases, but not by 5'-adenylyl imidodiphosphate, another ATP analogue that is not used by kinases. Neither cyclic nucleotides nor inhibition of calmodulin or tyrosine kinase prevented the inactivation. Staurosporine and bisindolylmaleimide, protein kinase C inhibitors, reduced inactivation of ICRAC, whereas phorbol ester accelerated inactivation of the current. These results demonstrate that a protein kinase-mediated phosphorylation, probably through protein kinase C, inactivates ICRAC. Activation of the adenosine receptor (A3 type) in RBL cells did not evoke much Ca2+ influx or systematic activation of ICRAC. After protein kinase C was blocked, however, large ICRAC was observed in all cells and this was accompanied by large Ca2+ influx. The ability of a receptor to evoke Ca2+ entry is determined, at least in part, by protein kinase C. Antigen stimulation, which triggers secretion through a process that requires Ca2+ influx, activated ICRAC. The regulation of ICRAC by protein kinase will therefore have important consequences on cell functioning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To explore the possible involvement of STAT factors ("signal transducers and activators of transcription") in the interleukin 2 receptor (IL-2R) signaling cascade, murine HT-2 cells expressing chimeric receptors composed of the extracellular domain of the erythropoietin receptor fused to the cytoplasmic domains of the IL-2R beta or -gamma c chains were prepared. Erythropoietin or IL-2 activation of these cells resulted in rapid nuclear expression of a DNA-binding activity that reacted with select STAT response elements. Based on reactivity with specific anti-STAT antibodies, this DNA-binding activity was identified as a murine homologue of STAT-5. Induction of nuclear expression of this STAT-5-like factor was blocked by the addition of herbimycin A, a tyrosine kinase inhibitor, but not by rapamycin, an immunophilin-binding antagonist of IL-2-induced proliferation. The IL-2R beta chain appeared critical for IL-2-induced activation of STAT-5, since a mutant beta chain lacking all cytoplasmic tyrosine residues was incapable of inducing this DNA binding. In contrast, a gamma c mutant lacking all of its cytoplasmic tyrosine residues proved fully competent for the induction of STAT-5. Physical binding of STAT-5 to functionally important tyrosine residues within IL-2R beta was supported by the finding that phosphorylated, but not nonphosphorylated, peptides corresponding to sequences spanning Y392 and Y510 of the IL-2R beta tail specifically inhibited STAT-5 DNA binding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interleukin 12 (IL-12) is an important immunoregulatory cytokine whose receptor is a member of the hematopoietin receptor superfamily. We have recently demonstrated that stimulation of human T and natural killer cells with IL-12 induces tyrosine phosphorylation of the Janus family tyrosine kinase JAK2 and Tyk2, implicating these kinases in the immediate biochemical response to IL-12. Recently, transcription factors known as STATs (signal transducers and activators of transcription) have been shown to be tyrosine phosphorylated and activated in response to a number of cytokines that bind hematopoietin receptors and activate JAK kinases. In this report we demonstrate that IL-12 induces tyrosine phosphorylation of a recently identified STAT family member, STAT4, and show that STAT4 expression is regulated by T-cell activation. Furthermore, we show that IL-12 stimulates formation of a DNA-binding complex that recognizes a DNA sequence previously shown to bind STAT proteins and that this complex contains STAT4. These data, and the recent demonstration of JAK phosphorylation by IL-12, identify a rapid signal-transduction pathway likely to mediate IL-12-induced gene expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

c-Src is a nontransforming tyrosine kinase that participates in signaling events mediated by a variety of polypeptide growth factor receptors, including the epidermal growth factor receptor (EGFR). Overexpression and continual ligand stimulation of the EGFR results in morphological transformation of cells in vitro and tumor development in vivo. Elevated levels of c-Src and the EGFR are found in a variety of human malignancies, raising the question of whether c-Src can functionally cooperate with the EGFR during tumorigenesis. To address this issue, we generated c-Src/EGFR double overexpressors and compared their proliferative and biochemical characteristics to those of single overexpressors and control cells. We found that in cells expressing high levels of receptor, c-Src potentiated DNA synthesis, growth in soft agar, and tumor formation in nude mice. Growth potentiation was associated with the formation of a heterocomplex between c-Src and activated EGFR, the appearance of a distinct tyrosyl phosphorylation on the receptor, and an enhancement of receptor substrate phosphorylation. These findings indicate that c-Src is capable of potentiating receptor-mediated tumorigenesis and suggest that synergism between c-Src and the EGFR may contribute to a more aggressive phenotype in multiple human tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Like other cell-surface receptors with intrinsic or associated protein-tyrosine kinase activity, the T-cell receptor complex undergoes a number of modifications, including tyrosine phosphorylation steps, after ligand binding but before transmitting a signal. The requirement for these modifications introduces a temporal lag between ligand binding and receptor signaling. A model for the T-cell receptor is proposed in which this feature greatly enhances the receptor's ability to discriminate between a foreign antigen and self-antigens with only moderately lower affinity. The proposed scheme is a form of kinetic proofreading, known to be essential for the fidelity of protein and DNA synthesis. A variant of this scheme is also described in which a requirement for formation of large aggregates may lead to a further enhancement of the specificity of T-cell activation. Through these mechanisms, ligands of different affinity potentially may elicit qualitatively different signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several lines of evidence have suggested that ganglioside GM1 stimulates neuronal sprouting and enhances the action of nerve growth factor (NGF), but its precise mechanism is yet to be elucidated. We report here that GM1 directly and tightly associates with Trk, the high-affinity tyrosine kinase-type receptor for NGF, and strongly enhances neurite outgrowth and neurofilament expression in rat PC12 cells elicited by a low dose of NGF that alone is insufficient to induce neuronal differentiation. The potentiation of NGF activity by GM1 appears to involve tyrosine-autophosphorylation of Trk, which contains intrinsic tyrosine kinase activity that has been localized to the cytoplasmic domain. In the presence of GM1 in culture medium, there is a > 3-fold increase in NGF-induced autophosphorylation of Trk as compared with NGF alone. We also found that GM1 could directly enhance NGF-activated autophosphorylation of immunoprecipitated Trk in vitro. Monosialoganglioside GM1, but not polysialogangliosides, is tightly associated with immunoprecipitated Trk. Furthermore, such tight association of GM1 with Trk appears to be specific, since a similar association was not observed with other growth factor receptors, such as low-affinity NGF receptor (p75NGR) and epidermal growth factor receptor (EGFR). Thus, these results strongly suggest that GM1 functions as a specific endogenous activator of NGF receptor function, and these enhanced effects appear to be due, at least in part, to tight association of GM1 with Trk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activity of calmodulin (CaM) is modulated not only by oscillations in the cytosolic concentration of free Ca2+, but also by its phosphorylation status. In the present study, the role of tyrosine-phosphorylated CaM [P-(Tyr)-CaM] on the regulation of the epidermal growth factor receptor (EGFR) has been examined using in vitro assay systems. We show that phosphorylation of CaM by rat liver solubilized EGFR leads to a dramatic increase in the subsequent phosphorylation of poly-L-(Glu:Tyr) (PGT) by the receptor in the presence of ligand, both in the absence and in the presence of Ca2+. This occurred in contrast with assays where P-(Tyr)-CaM accumulation was prevented by the presence of Ca2+, absence of a basic cofactor required for CaM phosphorylation and/or absence of CaM itself. Moreover, an antibody against CaM, which inhibits its phosphorylation, prevented the extra ligand-dependent EGFR activation. Addition of purified P-(Tyr)-CaM, phosphorylated by recombinant c-Src (cellular sarcoma kinase) and free of non-phosphorylated CaM, obtained by affinity-chromatography using an immobilized anti-phospho-(Tyr)-antibody, also increased the ligand-dependent tyrosine kinase activity of the isolated EGFR toward PGT. Also a CaM(Y99D/Y138D) mutant mimicked the effect of P-(Tyr)-CaM on ligand-dependent EGFR activation. Finally, we demonstrate that P-(Tyr)-CaM binds to the same site (645R-R-R-H-I-V-R-K-R-T-L-R-R-L-L-Q660) as non-phosphorylated CaM, located at the cytosolic juxtamembrane region of the EGFR. These results show that P-(Tyr)-CaM is an activator of the EGFR and suggest that it could contribute to the CaM-mediated ligand-dependent activation of the receptor that we previously reported in living cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM: To investigate the biological features of A549 cells in which epidermal growth factor (EGF) receptors expression were suppressed by RNA interference (RNAi). METHODS: A549 cells were transfected using short small interfering RNAs (siRNAs) formulated with Lipofectamine 2000. The EGF receptor numbers were determined by Western blotting and flowcytometry. The antiproliferative effects of sequence specific double stranded RNA (dsRNA) were assessed using cell count, colony assay and scratch assay. The chemosensitivity of transfected cells to cisplatin was measured by MTT. RESULTS: Sequence specific dsRNA-EGFR down-regulated EGF receptor expression dramatically. Compared with the control group, dsRNA-EGFR reduced the cell number by 85.0 %, decreased the colonies by 63.3 %, inhibited the migration by 87.2 %, and increased the sensitivity of A549 to cisplatin by four-fold. CONCLUSION: Sequence specific dsRNA-EGFR were capable of suppressing EGF receptor expression, hence significantly inhibiting cellular proliferation and motility, and enhancing chemosensitivity of A549 cells to cisplatin. The successful application of dsRNA-EGFR for inhibition of proliferation in EGF receptor overexpressing cells can help extend the list of available therapeutic modalities in the treatment of non-small-cell lung carcinoma (NSCLC).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The GH receptor (GHR) mediates metabolic and somatogenic actions of GH. Its extracellular domain (ECD; residues 1-246) has two subdomains, each with seven beta strands organized into two antiparallel beta sheets, connected by a short hinge region. Most of the ECD residues involved in GH binding reside in subdomain 1, whereas subdomain 2 harbors a dimerization interface between GHR dimers that alters conformation in response to GH. A regulated GHR metalloprotease cleavage site is in the membrane-proximal stem region of subdomain 2. We have identified a monoclonal anti-ECD antibody, anti-GHR(ext-mAb), which recognizes the rabbit and human GHRs by immunoprecipitation, but less so after GH treatment. By immunoblotting and immunoprecipitation, anti-GHR(ext-mAb) recognized a glutathione-S-transferase (GST) fusion incorporating subdomain 2, but not one including subdomain 1. In transient transfection experiments, anti-GHR(ext-mAb) failed to recognize by immunoprecipitation a previously characterized dimerization interface mutant GHR that is incompetent for signaling. In signaling experiments, brief pretreatment of GH-responsive human fibrosarcoma cells with anti-GHR(ext-mAb) dramatically inhibited GH-induced Janus kinase 2 and signal transducer and activator of transcription 5 tyrosine phosphorylation and prevented GH-induced GHR disulfide linkage (a reflection of GH-induced conformational changes). In contrast, anti-GHR(ext-mAb) only partially inhibited radiolabeled GH binding, suggesting its effects on signaling were not simply via inhibition of binding. Furthermore, anti-GHR(ext-mAb) prevented phorbol ester-stimulated GHR proteolysis, but GHR cleavage site mutants were normally recognized by the antibody, indicating that the stem region cleavage site is not a direct epitope. A Fab fragment of anti-GHR(ext-mAb) inhibited GH-induced GHR disulfide linkage and signaling, as well as phorbol ester-induced GHR proteolysis, in a fashion similar to the intact antibody. Thus, our findings suggest that anti-GHR(ext-mAb) has promise as a GH antagonist and as a tool in studies of conformational changes required for GHR activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To investigate the proportion of breast cancers arising inpatients with germ line BRCA1 and BRCA2 mutations expressing basal markers and developing predictive tests for identification of high-risk patients. Experimental Design: Histopathologic material from 182 tumors in BRCA1 mutation carriers, 63 BRCA2 carriers, and 109 controls, collected as part of the international Breast Cancer Linkage Consortium were immunohistochemically stained for CK14, CK5/6, CK17, epidermal growth factor receptor (EGFR), and osteonectin. Results: All five basal markers were commoner in BRCA1 tumors than in control tumors (CK14: 61% versus 12%; CK5/6: 58% versus 7%; CK17: 53% versus 10%; osteonectin: 43% versus 19%; EGFR: 67% versus 21%; P < 0.0001 in each case). In a multivariate analysis, CK14, CK5/6, and estrogen receptor (ER) remained significant predictors of BRCA1 carrier status. In contrast, the frequency of basal markers in BRCA2 tumors did not differ significant from controls. Conclusion: The use of cytokeratin staining in combination with ER and morphology provides a more accurate predictor of BRCA1 mutation status than previously available, that may be useful in selecting patients for BRCA1 mutation testing. The high percentage of BRCA1 cases positive for EGFR suggests that specific anti-tyrosine kinase therapy may be of potential benefit in these patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Members of the Wnt family and their receptors, the Frizzleds, are key regulators of pivotal developmental processes including embryonic patterning, specification of cell fate, and determination of cell polarity. The versatility and complexity of Wnt signaling has been further highlighted by the emergence of a novel family of Wnt receptors, the Ryk family. In mammals and flies, Ryk is a key chemorepulsive axon guidance receptor responsible for the establishment of important axon tracts during nervous system development. Although the function of Ryk is currently best understood with respect to this role, its widespread expression, both in developing tissues and in the adult, suggests that Ryk may regulate many essential biological processes. This hypothesis is supported by the multiple developmental phenotypes apparent in Ryk loss-of-function mice. These mice display a variety of embryonic abnormalities, including disruption of skeletal, craniofacial and cardiac development. Here we review Ryk structure and function focusing on its activity as an axon guidance receptor. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ryk (receptor related to tyrosine kinase) has been shown to be a novel Wnt receptor in both Caenorhabditis elegans and Drosophila melanogaster. Recently, Ryk-Wnt interactions were shown to guide corticospinal axons down the embryonic mouse spinal cord. Here we show that, in Ryk-deficient mice, cortical axons project aberrantly across the major forebrain commissure, the corpus callosum. Many mouse mutants have been described in which loss-of-function mutations result in the inability of callosal axons to cross the midline, thereby forming Probst bundles on the ipsilateral side. In contrast, loss of Ryk does not interfere with the ability of callosal axons to cross the midline but impedes their escape from the midline into the contralateral side. Therefore, Ryk(-/-) mice display a novel callosal guidance phenotype. We also show that Wnt5a acts as a chemorepulsive ligand for Ryk, driving callosal axons toward the contralateral hemisphere after crossing the midline. In addition, whereas callosal axons do cross the midline in Ryk(-/-) embryos, they are defasciculated on the ipsilateral side, indicating that Ryk also promotes fasciculation of axons before midline crossing. In summary, this study expands the emerging role for Wnts in axon guidance and identifies Ryk as a key guidance receptor in the establishment of the corpus callosum. Our analysis of Ryk function further advances our understanding of the molecular mechanisms underlying the formation of this important commissure.