953 resultados para Rat control


Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE Crohn's disease is a chronic inflammatory process that has recently been associated with a higher risk of early implant failure. Herein we provide information on the impact of colitis on peri-implant bone formation using preclinical models of chemically induced colitis. METHODS Colitis was induced by intrarectal instillation of 2,4,6-trinitro-benzene-sulfonic-acid (TNBS). Colitis was also induced by feeding rats dextran-sodium-sulfate (DSS) in drinking water. One week after disease induction, titanium miniscrews were inserted into the tibia. Four weeks after implantation, peri-implant bone volume per tissue volume (BV/TV) and bone-to-implant contacts (BIC) were determined by histomorphometric analysis. RESULTS Cortical histomorphometric parameters were similar in the control (n = 10), DSS (n = 10) and TNBS (n = 8) groups. Cortical BV/TV was 92.2 ± 3.7%, 92.0 ± 3.0% and 92.6 ± 2.7%. Cortical BIC was 81.3 ± 8.8%, 83.2 ± 8.4% and 84.0 ± 7.0%, respectively. No significant differences were observed when comparing the medullary BV/TV and BIC (19.5 ± 6.4%, 16.2 ± 5.6% and 15.4 ± 9.0%) and (48.8 ± 12.9%, 49.2 ± 6.2 and 41.9 ± 11.7%), respectively. Successful induction of colitis was confirmed by loss of body weight and colon morphology. CONCLUSIONS The results suggest bone regeneration around implants is not impaired in chemically induced colitis models. Considering that Crohn's disease can affect any part of the gastrointestinal tract including the mouth, our model only partially reflects the clinical situation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucocorticoids are often applied in neonatology and perinatology to fight the problems of respiratory distress and chronic lung disease. There are, however, many controversies regarding the adverse side effects and long-term clinical benefits of this therapeutic approach. In rats, glucocorticoids are known to seriously impair the formation of alveoli when applied during the first two postnatal weeks even at very low dosage. The current study investigates short-term and long-term glucocorticoid effects on the rat lung by means of morphologic and morphometric observations at light and electron microscopic levels. Application of a high-dosage protocol for only few days resulted in a marked acceleration of lung development with a precocious microvascular maturation resulting in single capillary network septa in the first 4 postnatal days. By postnatal d 10, the lung morphologic phenotype showed a step back in the maturational state, with an increased number of septa with double capillary layer, followed by an exceptional second round of the alveolarization process. As a result of this process, there was an almost complete recovery in the parenchymal lung structure by postnatal d 36, and by d 60, there were virtually no qualitative or quantitative differences between experimental and control rats. These findings indicate that both dosage and duration of glucocorticoid therapy in the early postnatal period are very critical with respect to lung development and maturation and that a careful therapeutic strategy can minimize late sequelae of treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the consequences of early malnutrition on milk production by dams and on body weight and structural lung growth of young rats using two models of protein restriction. Dams of the early restriction group were fed an 8% casein diet starting at parturition. Those of the delayed restriction group received a 12% casein diet from lactation d 8-14 and thereafter the 8% diet. After weaning, early restriction and delayed restriction group rats were maintained on low protein until d 49, then refed the control diet (18% casein) up to d 126. Milk was analyzed on d 12. Animals were killed at d 21, 49, and 126 for lung fixation in situ. In this report, we show that protein restriction lowered milk yield to 38% of normal. Milk lipid per gram of dry weight tended to be increased, whereas lactose and protein were significantly decreased. Pups from protein-restricted dams grew less and had lower lung volumes, effects being more serious at d 49. However, specific lung volumes (in milliliters per 100 g body weight) were constantly increased. This means that lung was either less affected than body mass or overdistended due to less connective tissue. After refeeding, both groups showed a remarkable catch-up in growth with restoration of the normal allometric relationship between lung volume and body weight. Thus, even after an early onset of protein restriction to total body, the lung is still capable to substantially recover from growth retardation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Once metastasis has occurred, the possibility of completely curing breast cancer is unlikely, particularly for the 30 to 40% of cancers overexpressing the gene for HER2/neu. A vaccine targeting p185, the protein product of the HER2/neu gene, could have therapeutic application by controlling the growth and metastasis of highly aggressive HER2/neu+ cells. The purpose of this study was to determine the effectiveness of two gene vaccines targeting HER2/neu in preventive and therapeutic tumor models. METHODS: The mouse breast cancer cell line A2L2, which expresses the gene for rat HER2/neu and hence p185, was injected into the mammary fat pad of mice as a model of solid tumor growth or was injected intravenously as a model of lung metastasis. SINCP-neu, a plasmid containing Sindbis virus genes and the gene for rat HER2/neu, and Adeno-neu, an E1,E2a-deleted adenovirus also containing the gene for rat HER2/neu, were tested as preventive and therapeutic vaccines. RESULTS: Vaccination with SINCP-neu or Adeno-neu before tumor challenge with A2L2 cells significantly inhibited the growth of the cells injected into the mammary fat or intravenously. Vaccination 2 days after tumor challenge with either vaccine was ineffective in both tumor models. However, therapeutic vaccination in a prime-boost protocol with SINCP-neu followed by Adeno-neu significantly prolonged the overall survival rate of mice injected intravenously with the tumor cells. Naive mice vaccinated using the same prime-boost protocol demonstrated a strong serum immunoglobulin G response and p185-specific cellular immunity, as shown by the results of ELISPOT (enzyme-linked immunospot) analysis for IFNgamma. CONCLUSION: We report herein that vaccination of mice with a plasmid gene vaccine and an adenovirus gene vaccine, each containing the gene for HER2/neu, prevented growth of a HER2/neu-expressing breast cancer cell line injected into the mammary fat pad or intravenously. Sequential administration of the vaccines in a prime-boost protocol was therapeutically effective when tumor cells were injected intravenously before the vaccination. The vaccines induced high levels of both cellular and humoral immunity as determined by in vitro assessment. These findings indicate that clinical evaluation of these vaccines, particularly when used sequentially in a prime-boost protocol, is justified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: We tested the hypothesis that the proliferative estrogen effect on the endometrium is enhanced in obese vs lean animals. STUDY DESIGN: Using Zucker fa/fa obese rats and lean control, we examined endometrial cell proliferation and the expression patterns of certain estrogen-regulated proproliferative and antiproliferative genes after short-term treatment with estradiol. RESULTS: No significant morphologic/histologic difference was seen between the obese rats and the lean rats. Estrogen-induced proproliferative genes cyclin A and c-Myc messenger RNA expression were significantly higher in the endometrium of obese rats compared with those of the lean control. Expression of the antiproliferative gene p27Kip1 was suppressed by estrogen treatment in both obese and lean rats; however, the decrease was more pronounced in obese rats. Estrogen more strongly induced the antiproliferative genes retinaldehyde dehydrogenases 2 and secreted frizzled-related protein 4 in lean rats but had little or no effect in obese rats. CONCLUSION: Enhancement of estrogen-induced endometrial proproliferative gene expression and suppression of antiproliferative gene expression was seen in the endometrium of obese vs lean animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An affinity-purified monospecific antibody was prepared to study the differential expression of the peroxisomal enzyme urate oxidase in rat liver during development and in various metabolic states. Monospecific antibody for urate oxidase was affinity purified from a pool of antibodies initially produced against a mixture of proteins from a Percoll density gradient fraction. Immunogold staining of samples of the gradient fraction and rat liver tissue with the affinity-purified antibody demonstrated labelling of peroxisomal core structures. Screening of liver homogenates from rats at different developmental stages using immunoblot analysis demonstrated low levels of urate oxidase prior to 20 days of age; at 20 days of age, urate oxidase levels are 2-fold greater than the 15-day old levels and approximate adult levels. Catalase expression during rat development mimicked the differential expression pattern of urate oxidase. The increase between days 15 and 20 was determined to be independent of the process of weaning. Administration of exogenous glucocorticoid hormone to 10-day old rats resulted in a precocious rise (2.5-fold) in urate oxidase levels, but adrenalectomy at 10 days of age did not cause decreased expression in the fourth week of life. In adult animals, exogenous glucocorticoid did not influence urate oxidase levels, but adrenalectomized rats had urate oxidase levels that were 40 percent of control expression 4 days post-surgery. Catalase expression was not influenced by glucocorticoid status in these studies. Glucocorticoid regulation of urate oxidase expression appears to be one part of a more complex mechanism controlling levels of the enzyme. Exogenous glucocorticoid administration influenced urate oxidase levels in an age-dependent manner; in addition, it is possible that the control mechanism for urate oxidase may include factors which can modulate expression in the absence of glucocorticoids. The effect of glucocorticoids on urate oxidase expression can not be extended to include all peroxisomal proteins, since catalase is unaffected. Glucocorticoids appear to participate in the complex regulation of urate oxidase expression; glucocorticoids influence urate oxidase specifically and do not modulate all peroxisomal proteins. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cellular mechanisms through which adult rat skeletal muscle protein is regulated during resistance exercise and training was investigated. A model of non-voluntary resistance exercise was described which involves the electrically-stimulated contraction of the lower leg muscles of anesthetized rats against a weighted pulley-bar. Muscle protein synthesis rates were measured by in vivo constant infusion of $\sp3$H-leucine following a single bout of resistance exercise. Specific messenger RNA levels were determined by dot-blot hybridization analysis using $\sp{32}$P-labelled DNA probes after a single bout and multiple bouts of phasic training. The effects of phasic training on increasing skeletal muscle mass was assessed. Between 12 and 36 hours following a single resistance exercise bout (24-192 contractions), total mixed and myofibril protein synthesis rates were significantly increase (32%-65%) after concentric (gastrocnemius m.) and eccentric (tibialis anterior m.) contractions. Eccentric contractions had greater effects on myofibril synthesis with more prolonged increases in synthesis rates. Lower numbers of eccentric than concentric contractions were required to increase synthesis. Cellular RNA was increased after exercise but the relative levels of skeletal $\alpha$-actin and cytochrome c mRNAs were unchanged. Since increases in synthesis rates exceeded increases in RNA, post-transcriptional mechanisms may be primarily responsible for increased protein synthesis after a resistance exercise bout. After 10-22 weeks of phasic eccentric resistance training, muscle enlargement (16%-30%) was produced in the tibialis anterior m. after all training paradigms examined. In contrast, gastrocnemius m. enlargement after phasic concentric training occurred after moderate (24/bout) but not after high (192/bout) repetition training. The absence of muscle growth in the gastrocnemius m. after high repetition training despite increased synthesis rates after the initial bout and RNA and possibly mRNA accumulation during training suggests a role for post-translational mechanisms (protein degradation) in the control of muscle growth in the gastrocnemius m. It is concluded that muscle protein during resistance exercise and training is regulated at several cellular levels. The particular response may be influenced by the exercise intensity and duration, the training frequency and the type of contractile work (eccentric vs. concentric) performed. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been shown that glucocorticoids accelerate lung development by limiting alveolar formation resulting from a premature maturation of the alveolar septa. Based on these data, the aim of the present work was to analyze the influence of dexamethasone on cell cycle control mechanisms during postnatal lung development. Cell proliferation is regulated by a network of signaling pathways that converge to the key regulator of cell cycle machinery: the cyclin-dependent kinase (CDK) system. The activity of the various cyclin/CDK complexes can be modulated by the levels of the cyclins and their CDKs, and by expression of specific CDK inhibitors (CKIs). In the present study, newborn rats were given a 4-d treatment with dexamethasone (0.1-0.01 microg/g body weight dexamethasone sodium phosphate daily on d 1-4), or saline. Morphologically, the treatment caused a significant thinning of the septa and an acceleration of lung maturation on d 4. Study of cyclin/CDK system at d 1-36 documented a transient down-regulation of cyclin/CDK complex activities at d 4 in the dexamethasone-treated animals. Analysis of the mechanisms involved suggested a role for the CKIs p21CIP1 and p27KIP1. Indeed, we observed an increase in p21CIP1 and p27KIP1 protein levels on d 4 in the dexamethasone-treated animals. By contrast, no variations in either cyclin and CDK expression, or cyclin/CDK complex formation could be documented. We conclude that glucocorticoids may accelerate lung maturation by influencing cell cycle control mechanisms, mainly through impairment of G1 cyclin/CDK complex activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE We investigated the skeletal growth profile of female rats from birth to senescence (100weeks) on the basis of sequential radiometrical, hormonal and biochemical parameters. DESIGN Weaning rats entered the study which was divided into two sections: a) sequential measurements of vertebral and tibial growths and bone mineral density (BMD), estimation of mineral content of the entire skeleton (BMC) and chemical analysis of vertebral Ca; and b) determination of basal and pulsatile growth hormone (rGH), insulin-like growth hormone (IGF-I), estradiol (E2), parathyroid hormone (PTH), osteocalcin (OC) and urinary d-pyridinoline (dp) throughout the experimental period. RESULTS Vertebral and tibial growths ceased at week 25 whereas BMD and BMC as well as total vertebral Ca exhibited a peak bone mass at week 40. rGH pulsatile profiles were significantly higher in younger animals coinciding with the period of active growth and IGF-I peaked at 7weeks, slowly declining thereafter and stabilizing after week 60. OC and dp closely paralleled IGF-I coinciding with the period of enhanced skeletal growth, remaining thereafter in the low range indicative of reduced bone turnover. E2 increased during reproductive life but the lower values subsequently recorded were still in the physiological range, strongly suggesting a protective role of this steroid on bone remodeling. PTH followed a similar profile to E2, but the significance of this after completion of growth remains unclear. CONCLUSIONS Mechanisms governing skeletal growth in the female rat appear similar to those in humans. Bone progression and attainment of peak bone mass are under simultaneous control of rGH, IGF-I and calciotropic hormones and are modulated by E2. This steroid seems to protect the skeleton from resorption before senescence whereas the role of PTH in this context remains uncertain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM Pharmacological inhibitors of prolyl hydroxylases, also termed hypoxia-mimetic agents (HMAs), when repeatedly injected can support angiogenesis and bone regeneration. However, the possible role of HMA loaded onto bone substitutes to support angiogenesis and bone regeneration under diabetic condition is unknown. The capacity of HMA loaded onto deproteinized bovine bone mineral (DBBM) to support angiogenesis and bone formation was examined in diabetic Wistar rats. METHODS Diabetes was induced by intraperitoneal injection of streptozotocin. The HMA dimethyloxalylglycine (DMOG) and desferrioxamine (DFO) were lyophilized onto DBBM. Calvarial defects were created with a trephine drill and filled with the respective bone substitutes. After 4 weeks of healing, the animals were subjected to histological and histomorphometric analysis. RESULTS In this report, we provide evidence that DMOG loaded onto DBBM can support angiogenesis in vivo. Specifically, we show that DMOG increased the vessel area in the defect site to 2.4% ± 1.3% compared with controls 1.1% ± 0.48% (P = 0.012). There was a trend toward an increased vessel number in the defect site with 38.6 ± 17.4 and 31.0 ± 10.3 in the DMOG and the control group (P = 0.231). The increase in angiogenesis, however, did not translate into enhanced bone formation in the defect area with 9.2% ± 7.1% and 8.4% ± 5.6% in DMOG and control group, respectively. No significant changes were caused by DFO. CONCLUSIONS The results suggest that DMOG loaded onto DBBM can support angiogenesis, but bone formation does not increase accordingly in a type 1 diabetic rat calvarial defect model at the indicated time point.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The myelin-associated protein Nogo-A is among the most potent neurite growth inhibitors in the adult CNS. Recently, Nogo-A expression was demonstrated in a number of neuronal subpopulations of the adult and developing CNS but at present, little is known about the expression of Nogo-A in the nigrostriatal system, a brain structure severely affected in Parkinson's disease (PD). The present study sought to characterize the expression pattern of Nogo-A immunoreactive (ir) cells in the adult ventral mesencephalon of control rats and in the 6-hydroxydopamine (6-OHDA) rat model of PD. Immunohistochemical analyses of normal adult rat brain showed a distinct expression of Nogo-A in the ventral mesencephalon, with the highest level in the substantia nigra pars compacta (SNc) where it co-localized with dopaminergic neurons. Analyses conducted 1week and 1 month after unilateral striatal injections of 6-OHDA disclosed a severe loss of the number of Nogo-A-ir cells in the SNc. Notably, at 1week after treatment, more dopaminergic neurons expressing Nogo-A were affected by the 6-OHDA toxicity than Nogo-A-negative dopaminergic neurons. However, at later time points more of the surviving dopaminergic neurons expressed Nogo-A. In the striatum, both small and large Nogo-A-positive cells were detected. The large cells were identified as cholinergic interneurons. Our results suggest yet unidentified functions of Nogo-A in the CNS beyond the inhibition of axonal regeneration and plasticity, and may indicate a role for Nogo-A in PD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After intestinal bypass, the mucosa of the in-continuity segment (ICS) of intestine undergoes adaptive hyperplasia which results in increased absorptive function per length of intestine. In the present study, 70% of the small intestine was bypassed in rats to determine if intestinal muscle also adapts after bypass. To determine the effect of bypass on intestinal transit, a poorly absorbed marker substance was introduced into the orad portion of the ICS or bypassed loop (BL). Significantly less marker (P < 0.05) was passed from the ICS into the colon in 50 minutes in fed rats at 14 days compared to at 3 days after bypass. In 150 minutes there was more marker in the colon of fed rats at 3 and 14 days but not at 35 days after bypass than in control. In the BL, transit was slowed significantly in fed rats at 3 and 35 days and in fasted rats at 3 days but not 35 days after bypass compared to control. The circular muscle from the BL and the distal but not proximal portion of the ICS developed significantly more carbachol-stimulated force in vitro at 35 but not 3 days after bypass compared to unoperated but not sham-operated controls. At 35 days after bypass, the muscle layers had a greater muscle wet weight and protein content compared to both unoperated and sham-operated control in both the proximal and distal portions of the ICS. Similarly, there was more muscle in histological sections of the BL and distal portion of the ICS at 35 days after bypass compared to either control. Nonetheless, at 35 days after bypass actomyosin content as a fraction of muscle weight or total protein content was not different from control. The results support the hypothesis that there was a functional adaptation, i.e. slowed transit in fed rats that allowed more time for absorption. Feeding caused slowed transit in the BL as well as the ICS. Other results suggest that an increased amount of functional muscle formed in the distal portion of the ICS after bypass. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of the work performed in this dissertation was to examine some of the possible regulatory mechanisms involved in the initiation of muscular atrophy during periods of decreased muscle utilization resulting from hindlimb immobilization in the rat. A 37% decrease in the rate of total muscle protein synthesis which has been observed to occur in the first 6 h of immobilization contributes significantly to the observed loss of protein during immobilization.^ The rates of cytochrome c and actin synthesis were determined in adult rat red vastus lateralis and gastrocnemius muscles, respectively, by the constant infusion and incorporation of ('3)H-tyrosine into protein. The fractional synthesis rates of both actin and cytochrome c were significantly decreased (P < 0.05) in the 6th h of hindlimb immobilization.^ RHA was extracted from adult rat gastrocnemius muscle by modification of the phenol: chloroform: SDS extraction procedures commonly used for preparation of RNA for hybridization analysis from other mammalian tissues. RNA content of rat gastrocnemius muscle, as determined by this method of extraction and its subsequent quantification by UV absorbance and orcinol assay, was significantly greater than the RNA content previously determined for adult rat gastrocnemius by other commonly employed methods.^ RNA extracted by this method from gastrocnemius muscles of control and 6h immobilized rats was subjected to "dot blot" hybridization to ('32)P-labelled probe from plasmid p749, containing a cDNA sequence complementary to (alpha)-actin mRNA and from rat skeletal muscle. (alpha)-Actin specific mRNA content as estimated by this procedure is not significantly decreased in rat gastrocnemius following 6h or hindlimb immobilization. However, (alpha)-actin specific mRNA content is significantly decreased (P < 0.05) in adult rat gastrocnemius (alpha)-actin specific mRNA is not decreased in adult rat gastrocnemius muscle following 6h of immobilization, a time when actin synthesis is significantly decreased, it is concluded that a change in (alpha)-actin specific mRNA content is not the initiating event responsible for the early decrease in actin synthesis observed in the 6th h of immobilization. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An ultrastructural study of the hypoglossal nucleus (XII) in the rat has revealed two distinct neuronal populations. Hypoglossal motoneurons comprised the largest population of neurons in XII and were identified following injection of horseradish peroxidase (HRP) into the tongue. Motoneurons were large (25-50(mu)m), multipolar in shape and distributed throughout XII. The nucleus was large, round and centrally located, and the cytoplasm was characterized by dense lamellar arrays of rough endoplasmic reticulum. In contrast, a second population of small (10-18(mu)m), round to oval shaped neurons was found restricted to the ventral and dorsolateral regions of XII. The nucleus was markedly invaginated and eccentric, the cytoplasm scant and filled with free ribosomes, and the absence of lamellar arrays of rough endoplasmic reticulum was conspicuous. Neurons of this type were never found to contain HRP reaction product. These results demonstrate that the hypoglossal nucleus does not consist solely of motoneurons, but includes a distinctly separate, presumably non-motoneuronal pool. Arguments are presented in favor of this second neuron population being interneurons. The functional significance of these findings in relation to tongue control is discussed. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radial Glia (RG) are a mitotically active population of cells which reside within the ventricular zone at the lateral ventricle and give rise to the pyramidal neurons and astrocytes of the neocortex. Through cellular divisions, RG produce two daughter cells, one which resides in the ventricular zone and becomes another RG while the other is an immature progenitor which migrates away from the ventricle and populates the growing cortex. RG have been found to be a heterogeneous population of cells which express different surface antigens and genetic promoters which may influence the cellular fate of their progeny. In this study we have investigated the progenitor profiles of two promoters, nestin (a neural intermediate filament) and GLAST (astrocyte specific glutamate transporter) within the RG. In-utero electroporation was used to transfect reporter plasmids under the control of promoter driven Cre-Recombinase into the RG lining the lateral ventricle during mid-neurogensesis (E14). It was found that there was a large amount of overlap between the nestin and GLAST expressing populations of RG, however, there was still a small subset of cells which exclusively expressed GLAST. This prompted us to investigate the lineage of these two promoters using the PiggyBac transposon system which uses promoter driven episomal plasmids to incorporate a reporter gene into the genome of the transfected cells, allowing use to trace their full progeny. Our data shows that nestin expressing RG generate mostly neurons and few astrocytes while the GLAST expressing RG generate a greater proportion of astrocytes to neurons.