923 resultados para Radial distribution function
Resumo:
The majority of young, low-mass stars are surrounded by optically thick accretion disks. These circumstellar disks provide large reservoirs of gas and dust that will eventually be transformed into planetary systems. Theory and observations suggest that the earliest stage toward planet formation in a protoplanetary disk is the growth of particles, from sub-micron-sized grains to centimeter- sized pebbles. Theory indicates that small interstellar grains are well coupled into the gas and are incorporated to the disk during the proto-stellar collapse. These dust particles settle toward the disk mid-plane and simultaneously grow through collisional coagulation in a very short timescale. Observationally, grain growth can be inferred by measuring the spectral energy distribution at long wavelengths, which traces the continuum dust emission spectrum and hence the dust opacity. Several observational studies have indicated that the dust component in protoplanetary disks has evolved as compared to interstellar medium dust particles, suggesting at least 4 orders of magnitude in particle- size growth. However, the limited angular resolution and poor sensitivity of previous observations has not allowed for further exploration of this astrophysical process.
As part of my thesis, I embarked in an observational program to search for evidence of radial variations in the dust properties across a protoplanetary disk, which may be indicative of grain growth. By making use of high angular resolution observations obtained with CARMA, VLA, and SMA, I searched for radial variations in the dust opacity inside protoplanetary disks. These observations span more than an order of magnitude in wavelength (from sub-millimeter to centimeter wavelengths) and attain spatial resolutions down to 20 AU. I characterized the radial distribution of the circumstellar material and constrained radial variations of the dust opacity spectral index, which may originate from particle growth in these circumstellar disks. Furthermore, I compared these observational constraints with simple physical models of grain evolution that include collisional coagulation, fragmentation, and the interaction of these grains with the gaseous disk (the radial drift problem). For the parameters explored, these observational constraints are in agreement with a population of grains limited in size by radial drift. Finally, I also discuss future endeavors with forthcoming ALMA observations.
Resumo:
完全电离等离子体中,当试探粒子分布函数fα是关于试探粒子速度vα的偶函数时,导出了一个新的动力学方程的碰撞算子.该碰撞算子同时包括了大角散射(库仑近碰撞)和小角散射(库仑远碰撞)的二体碰撞的贡献,因此,该碰撞算子同时适用于弱耦合(库仑对数ln∧≥10)和中等耦合(库仑对数2≤ln∧≤10)等离子体.而且经过修改的碰撞算子和Rosenbluth势有直接的联系,当试探粒子和场粒子满足条件mα<mβ(如电子-离子碰撞或Lorentz气体模型)和|vα|〉|vβ|时,经约化的电子-离子碰撞算子同最初的Fokker
Resumo:
Dynamic properties of proteins have crucial roles in understanding protein function and molecular mechanism within cells. In this paper, we combined total internal reflection fluorescence microscopy with oblique illumination fluorescence microscopy to observe directly the movement and localization of membrane-anchored green fluorescence proteins in living cells. Total internal reflect illumination allowed the observation of proteins in the cell membrane of living cells since the penetrate depth could be adjusted to about 80 nm, and oblique illumination allowed the observation of proteins both in the cytoplasm and apical membrane, which made this combination a promising tool to investigate the dynamics of proteins through the whole cell. Not only individual protein molecule tracks have been analyzed quantitatively but also cumulative probability distribution function analysis of ensemble trajectories has been done to reveal the mobility of proteins. Finally, single particle tracking has acted as a compensation for single molecule tracking. All the results exhibited green fluorescence protein dynamics within cytoplasm, on the membrane and from cytoplasm to plasma membrane.
Resumo:
In this thesis, we provide a statistical theory for the vibrational pooling and fluorescence time dependence observed in infrared laser excitation of CO on an NaCl surface. The pooling is seen in experiment and in computer simulations. In the theory, we assume a rapid equilibration of the quanta in the substrate and minimize the free energy subject to the constraint at any time t of a fixed number of vibrational quanta N(t). At low incident intensity, the distribution is limited to one- quantum exchanges with the solid and so the Debye frequency of the solid plays a key role in limiting the range of this one-quantum domain. The resulting inverted vibrational equilibrium population depends only on fundamental parameters of the oscillator (ωe and ωeχe) and the surface (ωD and T). Possible applications and relation to the Treanor gas phase treatment are discussed. Unlike the solid phase system, the gas phase system has no Debye-constraining maximum. We discuss the possible distributions for arbitrary N-conserving diatom-surface pairs, and include application to H:Si(111) as an example.
Computations are presented to describe and analyze the high levels of infrared laser-induced vibrational excitation of a monolayer of absorbed 13CO on a NaCl(100) surface. The calculations confirm that, for situations where the Debye frequency limited n domain restriction approximately holds, the vibrational state population deviates from a Boltzmann population linearly in n. Nonetheless, the full kinetic calculation is necessary to capture the result in detail.
We discuss the one-to-one relationship between N and γ and the examine the state space of the new distribution function for varied γ. We derive the Free Energy, F = NγkT − kTln(∑Pn), and effective chemical potential, μn ≈ γkT, for the vibrational pool. We also find the anti correlation of neighbor vibrations leads to an emergent correlation that appears to extend further than nearest neighbor.
Resumo:
This dissertation studies long-term behavior of random Riccati recursions and mathematical epidemic model. Riccati recursions are derived from Kalman filtering. The error covariance matrix of Kalman filtering satisfies Riccati recursions. Convergence condition of time-invariant Riccati recursions are well-studied by researchers. We focus on time-varying case, and assume that regressor matrix is random and identical and independently distributed according to given distribution whose probability distribution function is continuous, supported on whole space, and decaying faster than any polynomial. We study the geometric convergence of the probability distribution. We also study the global dynamics of the epidemic spread over complex networks for various models. For instance, in the discrete-time Markov chain model, each node is either healthy or infected at any given time. In this setting, the number of the state increases exponentially as the size of the network increases. The Markov chain has a unique stationary distribution where all the nodes are healthy with probability 1. Since the probability distribution of Markov chain defined on finite state converges to the stationary distribution, this Markov chain model concludes that epidemic disease dies out after long enough time. To analyze the Markov chain model, we study nonlinear epidemic model whose state at any given time is the vector obtained from the marginal probability of infection of each node in the network at that time. Convergence to the origin in the epidemic map implies the extinction of epidemics. The nonlinear model is upper-bounded by linearizing the model at the origin. As a result, the origin is the globally stable unique fixed point of the nonlinear model if the linear upper bound is stable. The nonlinear model has a second fixed point when the linear upper bound is unstable. We work on stability analysis of the second fixed point for both discrete-time and continuous-time models. Returning back to the Markov chain model, we claim that the stability of linear upper bound for nonlinear model is strongly related with the extinction time of the Markov chain. We show that stable linear upper bound is sufficient condition of fast extinction and the probability of survival is bounded by nonlinear epidemic map.
Resumo:
This is a two-part thesis concerning the motion of a test particle in a bath. In part one we use an expansion of the operator PLeit(1-P)LLP to shape the Zwanzig equation into a generalized Fokker-Planck equation which involves a diffusion tensor depending on the test particle's momentum and the time.
In part two the resultant equation is studied in some detail for the case of test particle motion in a weakly coupled Lorentz Gas. The diffusion tensor for this system is considered. Some of its properties are calculated; it is computed explicitly for the case of a Gaussian potential of interaction.
The equation for the test particle distribution function can be put into the form of an inhomogeneous Schroedinger equation. The term corresponding to the potential energy in the Schroedinger equation is considered. Its structure is studied, and some of its simplest features are used to find the Green's function in the limiting situations of low density and long time.
Resumo:
Close to equilibrium, a normal Bose or Fermi fluid can be described by an exact kinetic equation whose kernel is nonlocal in space and time. The general expression derived for the kernel is evaluated to second order in the interparticle potential. The result is a wavevector- and frequency-dependent generalization of the linear Uehling-Uhlenbeck kernel with the Born approximation cross section.
The theory is formulated in terms of second-quantized phase space operators whose equilibrium averages are the n-particle Wigner distribution functions. Convenient expressions for the commutators and anticommutators of the phase space operators are obtained. The two-particle equilibrium distribution function is analyzed in terms of momentum-dependent quantum generalizations of the classical pair distribution function h(k) and direct correlation function c(k). The kinetic equation is presented as the equation of motion of a two -particle correlation function, the phase space density-density anticommutator, and is derived by a formal closure of the quantum BBGKY hierarchy. An alternative derivation using a projection operator is also given. It is shown that the method used for approximating the kernel by a second order expansion preserves all the sum rules to the same order, and that the second-order kernel satisfies the appropriate positivity and symmetry conditions.
Resumo:
The influence of composition on the structure and on the electric and magnetic properties of amorphous Pd-Mn-P and Pd-Co-P prepared by rapid quenching techniques were investigated in terms of (1) the 3d band filling of the first transition metal group, (2) the phosphorus concentration effect which acts as an electron donor and (3) the transition metal concentration.
The structure is essentially characterized by a set of polyhedra subunits essentially inverse to the packing of hard spheres in real space. Examination of computer generated distribution functions using Monte Carlo random statistical distribution of these polyhedra entities demonstrated tile reproducibility of the experimentally calculated atomic distribution function. As a result, several possible "structural parameters" are proposed such as: the number of nearest neighbors, the metal-to-metal distance, the degree of short-range order and the affinity between metal-metal and metal-metalloid. It is shown that the degree of disorder increases from Ni to Mn. Similar behavior is observed with increase in the phosphorus concentration.
The magnetic properties of Pd-Co-P alloys show that they are ferromagnetic with a Curie temperature between 272 and 399°K as the cobalt concentration increases from 15 to 50 at.%. Below 20 at.% Co the short-range exchange interactions which produce the ferromagnetism are unable to establish a long-range magnetic order and a peak in the magnetization shows up at the lowest temperature range . The electric resistivity measurements were performed from liquid helium temperatures up to the vicinity of the melting point (900°K). The thermomagnetic analysis was carried out under an applied field of 6.0 kOe. The electrical resistivity of Pd-Co-P shows the coexistence of a Kondo-like minimum with ferromagnetism. The minimum becomes less important as the transition metal concentration increases and the coefficients of ℓn T and T^2 become smaller and strongly temperature dependent. The negative magnetoresistivity is a strong indication of the existence of localized moment.
The temperature coefficient of resistivity which is positive for Pd- Fe-P, Pd-Ni-P, and Pd-Co-P becomes negative for Pd-Mn-P. It is possible to account for the negative temperature dependence by the localized spin fluctuation model and the high density of states at the Fermi energy which becomes maximum between Mn and Cr. The magnetization curves for Pd-Mn-P are typical of those resulting from the interplay of different exchange forces. The established relationship between susceptibility and resistivity confirms the localized spin fluctuation model. The magnetoresistivity of Pd-Mn-P could be interpreted in tenns of a short-range magnetic ordering that could arise from the Rudennan-Kittel type interactions.
Resumo:
随着研究工作的逐步深入,目前已经利用经典热光源实现了关联衍射成像,使得该技术有望在X射线以及中子衍射成像等方面得到广泛应用。在实验利用非相干光得到物体无透镜傅里叶变换频谱的基础上,采用误差消除与输入输出恢复算法,并结合过采样理论,实现了实验所用物体透射率函数的恢复。分别得到了纯振幅物体的振幅分布函数与纯相位物体的相位分布函数。此外,还讨论了实验所得傅里叶变换频谱的噪声等因素对图像恢复结果的影响。
Resumo:
Planets are assembled from the gas, dust, and ice in the accretion disks that encircle young stars. Ices of chemical compounds with low condensation temperatures (<200 K), the so-called volatiles, dominate the solid mass reservoir from which planetesimals are formed and are thus available to build the protoplanetary cores of gas/ice giant planets. It has long been thought that the regions near the condensation fronts of volatiles are preferential birth sites of planets. Moreover, the main volatiles in disks are also the main C-and O-containing species in (exo)planetary atmospheres. Understanding the distribution of volatiles in disks and their role in planet-formation processes is therefore of great interest.
This thesis addresses two fundamental questions concerning the nature of volatiles in planet-forming disks: (1) how are volatiles distributed throughout a disk, and (2) how can we use volatiles to probe planet-forming processes in disks? We tackle the first question in two complementary ways. We have developed a novel super-resolution method to constrain the radial distribution of volatiles throughout a disk by combining multi-wavelength spectra. Thanks to the ordered velocity and temperature profiles in disks, we find that detailed constraints can be derived even with spatially and spectrally unresolved data -- provided a wide range of energy levels are sampled. We also employ high-spatial resolution interferometric images at (sub)mm frequencies using the Atacama Large Millimeter Array (ALMA) to directly measure the radial distribution of volatiles.
For the second question, we combine volatile gas emission measurements with those of the dust continuum emission or extinction to understand dust growth mechanisms in disks and disk instabilities at planet-forming distances from the central star. Our observations and models support the idea that the water vapor can be concentrated in regions near its condensation front at certain evolutionary stages in the lifetime of protoplanetary disks, and that fast pebble growth is likely to occur near the condensation fronts of various volatile species.
Resumo:
The microscopic properties of a two-dimensional model dense fluid of Lennard-Jones disks have been studied using the so-called "molecular dynamics" method. Analyses of the computer-generated simulation data in terms of "conventional" thermodynamic and distribution functions verify the physical validity of the model and the simulation technique.
The radial distribution functions g(r) computed from the simulation data exhibit several subsidiary features rather similar to those appearing in some of the g(r) functions obtained by X-ray and thermal neutron diffraction measurements on real simple liquids. In the case of the model fluid, these "anomalous" features are thought to reflect the existence of two or more alternative configurations for local ordering.
Graphical display techniques have been used extensively to provide some intuitive insight into the various microscopic phenomena occurring in the model. For example, "snapshots" of the instantaneous system configurations for different times show that the "excess" area allotted to the fluid is collected into relatively large, irregular, and surprisingly persistent "holes". Plots of the particle trajectories over intervals of 2.0 to 6.0 x 10-12 sec indicate that the mechanism for diffusion in the dense model fluid is "cooperative" in nature, and that extensive diffusive migration is generally restricted to groups of particles in the vicinity of a hole.
A quantitative analysis of diffusion in the model fluid shows that the cooperative mechanism is not inconsistent with the statistical predictions of existing theories of singlet, or self-diffusion in liquids. The relative diffusion of proximate particles is, however, found to be retarded by short-range dynamic correlations associated with the cooperative mechanism--a result of some importance from the standpoint of bimolecular reaction kinetics in solution.
A new, semi-empirical treatment for relative diffusion in liquids is developed, and is shown to reproduce the relative diffusion phenomena observed in the model fluid quite accurately. When incorporated into the standard Smoluchowski theory of diffusion-controlled reaction kinetics, the more exact treatment of relative diffusion is found to lower the predicted rate of reaction appreciably.
Finally, an entirely new approach to an understanding of the liquid state is suggested. Our experience in dealing with the simulation data--and especially, graphical displays of the simulation data--has led us to conclude that many of the more frustrating scientific problems involving the liquid state would be simplified considerably, were it possible to describe the microscopic structures characteristic of liquids in a concise and precise manner. To this end, we propose that the development of a formal language of partially-ordered structures be investigated.
Resumo:
The ambiguity function was employed as a merit function to design an optical system with a high depth of focus. The ambiguity function with the desired enlarged-depth-of-focus characteristics was obtained by using a properly designed joint filter to modify the ambiguity function of the original pupil in the phase-space domain. From the viewpoint of the filter theory, we roughly propose that the constraints of the spatial filters that are used to enlarge the focal depth must be satisfied. These constraints coincide with those that appeared in the previous literature on this topic. Following our design procedure, several sets of apodizers were synthesized, and their performances in the defocused imagery were compared with each other and with other previous designs. (c) 2005 Optical Society of America.
Resumo:
This thesis is a study of nonlinear phenomena in the propagation of electromagnetic waves in a weakly ionized gas externally biased with a magnetostatic field. The present study is restricted to the nonlinear phenomena rising from the interaction of electromagnetic waves in the ionized gas. The important effects of nonlinearity are wave-form distortion leads to cross modulation of one wave by a second amplitude-modulated wave.
The nonlinear effects are assumed to be small so that a perturbation method can be used. Boltzmann’s kinetic equation with an appropriate expression for the collision term is solved by expanding the electron distribution function into spherical harmonics in velocity space. In turn, the electron convection current density and the conductivity tensors of the nonlinear ionized gas are found from the distribution function. Finally, the expression for the current density and Maxwell’s equations are employed to investigate the effects of nonlinearity on the propagation of electromagnetic waves in the ionized gas, and also on the reflection of waves from an ionized gas of semi-infinite extent.
Resumo:
We are at the cusp of a historic transformation of both communication system and electricity system. This creates challenges as well as opportunities for the study of networked systems. Problems of these systems typically involve a huge number of end points that require intelligent coordination in a distributed manner. In this thesis, we develop models, theories, and scalable distributed optimization and control algorithms to overcome these challenges.
This thesis focuses on two specific areas: multi-path TCP (Transmission Control Protocol) and electricity distribution system operation and control. Multi-path TCP (MP-TCP) is a TCP extension that allows a single data stream to be split across multiple paths. MP-TCP has the potential to greatly improve reliability as well as efficiency of communication devices. We propose a fluid model for a large class of MP-TCP algorithms and identify design criteria that guarantee the existence, uniqueness, and stability of system equilibrium. We clarify how algorithm parameters impact TCP-friendliness, responsiveness, and window oscillation and demonstrate an inevitable tradeoff among these properties. We discuss the implications of these properties on the behavior of existing algorithms and motivate a new algorithm Balia (balanced linked adaptation) which generalizes existing algorithms and strikes a good balance among TCP-friendliness, responsiveness, and window oscillation. We have implemented Balia in the Linux kernel. We use our prototype to compare the new proposed algorithm Balia with existing MP-TCP algorithms.
Our second focus is on designing computationally efficient algorithms for electricity distribution system operation and control. First, we develop efficient algorithms for feeder reconfiguration in distribution networks. The feeder reconfiguration problem chooses the on/off status of the switches in a distribution network in order to minimize a certain cost such as power loss. It is a mixed integer nonlinear program and hence hard to solve. We propose a heuristic algorithm that is based on the recently developed convex relaxation of the optimal power flow problem. The algorithm is efficient and can successfully computes an optimal configuration on all networks that we have tested. Moreover we prove that the algorithm solves the feeder reconfiguration problem optimally under certain conditions. We also propose a more efficient algorithm and it incurs a loss in optimality of less than 3% on the test networks.
Second, we develop efficient distributed algorithms that solve the optimal power flow (OPF) problem on distribution networks. The OPF problem determines a network operating point that minimizes a certain objective such as generation cost or power loss. Traditionally OPF is solved in a centralized manner. With increasing penetration of volatile renewable energy resources in distribution systems, we need faster and distributed solutions for real-time feedback control. This is difficult because power flow equations are nonlinear and kirchhoff's law is global. We propose solutions for both balanced and unbalanced radial distribution networks. They exploit recent results that suggest solving for a globally optimal solution of OPF over a radial network through a second-order cone program (SOCP) or semi-definite program (SDP) relaxation. Our distributed algorithms are based on the alternating direction method of multiplier (ADMM), but unlike standard ADMM-based distributed OPF algorithms that require solving optimization subproblems using iterative methods, the proposed solutions exploit the problem structure that greatly reduce the computation time. Specifically, for balanced networks, our decomposition allows us to derive closed form solutions for these subproblems and it speeds up the convergence by 1000x times in simulations. For unbalanced networks, the subproblems reduce to either closed form solutions or eigenvalue problems whose size remains constant as the network scales up and computation time is reduced by 100x compared with iterative methods.
Resumo:
Neste trabalho, três técnicas para resolver numericamente problemas inversos de transporte de partículas neutras a uma velocidade para aplicações em engenharia nuclear são desenvolvidas. É fato conhecido que problemas diretos estacionários e monoenergéticos de transporte são caracterizados por estimar o fluxo de partículas como uma função-distribuição das variáveis independentes de espaço e de direção de movimento, quando os parâmetros materiais (seções de choque macroscópicas), a geometria, e o fluxo incidente nos contornos do domínio (condições de contorno), bem como a distribuição de fonte interior são conhecidos. Por outro lado, problemas inversos, neste trabalho, buscam estimativas para o fluxo incidente no contorno, ou a fonte interior, ou frações vazio em barras homogêneas. O modelo matemático usado tanto para os problemas diretos como para os problemas inversos é a equação de transporte independente do tempo, a uma velocidade, em geometria unidimensional e com o espalhamento linearmente anisotrópico na formulação de ordenadas discretas (SN). Nos problemas inversos de valor de contorno, dado o fluxo emergente em um extremo da barra, medido por um detector de nêutrons, por exemplo, buscamos uma estimativa precisa para o fluxo incidente no extremo oposto. Por outro lado, nos problemas inversos SN de fonte interior, buscamos uma estimativa precisa para a fonte armazenada no interior do domínio para fins de blindagem, sendo dado o fluxo emergente no contorno da barra. Além disso, nos problemas inversos SN de fração de vazio, dado o fluxo emergente em uma fronteira da barra devido ao fluxo incidente prescrito no extremo oposto, procuramos por uma estimativa precisa da fração de vazio no interior da barra, no contexto de ensaios não-destrutivos para aplicações na indústria. O código computacional desenvolvido neste trabalho apresenta o método espectronodal de malha grossa spectral Greens function (SGF) para os problemas diretos SN em geometria unidimensional para gerar soluções numéricas precisas para os três problemas inversos SN descritos acima. Para os problemas inversos SN de valor de contorno e de fonte interior, usamos a propriedade da proporcionalidade da fuga de partículas; ademais, para os problemas inversos SN de fração de vazio, oferecemos a técnica a qual nos referimos como o método físico da bissecção. Apresentamos resultados numéricos para ilustrar a precisão das três técnicas, conforme descrito nesta tese.