984 resultados para RNA, Messenger -- genetics


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Glitazones are efficient insulin sensitizers that blunt the effects of angiotensin II (ANG II) in the rat. Sodium chloride is another important modulator of the systemic and renal effects of ANG II. Whether glitazones interfere with the interaction between sodium and the response to ANG II is not known. Therefore, we investigated the effects of pioglitazone on the relationship between sodium and the systemic and renal effects of ANG II in rats. Pioglitazone, or vehicle, was administered for 4 wk to 8-wk-old obese Zucker rats. Animals were fed a normal-sodium (NS) or a high-sodium (HS) diet. Intravenous glucose tolerance tests, systemic and renal hemodynamic responses to ANG II, and the renal ANG II binding and expression of ANG II type 1 (AT(1)) receptors were measured. The results of our study were that food intake and body weight increased, whereas blood pressure, heart rate, filtration fraction, and insulin levels decreased significantly with pioglitazone in obese rats on both diets. Pioglitazone blunted the systemic response to ANG II and abolished the increased responsiveness to ANG II induced by a HS diet. Pioglitazone modified the renal hemodynamic response to changes in salt intake while maintaining a lower filtration fraction with ANG II perfusion. These effects were associated with a decrease in the number and expression of the AT(1) receptor in the kidney. In conclusion, these data demonstrate that the peroxisome proliferator-activated receptor-gamma agonist pioglitazone modifies the physiological relationship between sodium chloride and the response to ANG II in insulin-resistant rats.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The gap-junction protein connexin36 (Cx36) contributes to control the functions of insulin-producing cells. In this study, we investigated whether the expression of Cx36 is regulated by glucose in insulin-producing cells. Glucose caused a significant reduction of Cx36 in insulin-secreting cell lines and freshly isolated pancreatic rat islets. This decrease appeared at the mRNA and the protein levels in a dose- and time-dependent manner. 2-Deoxyglucose partially reproduced the effect of glucose, whereas glucosamine, 3-O-methyl-D-glucose and leucine were ineffective. Moreover, KCl-induced depolarization of beta-cells had no effect on Cx36 expression, indicating that glucose metabolism and ATP production are not mandatory for glucose-induced Cx36 downregulation. Forskolin mimicked the repression of Cx36 by glucose. Glucose or forskolin effects on Cx36 expression were not suppressed by the L-type Ca(2+)-channel blocker nifedipine but were fully blunted by the cAMP-dependent protein kinase (PKA) inhibitor H89. A 4 kb fragment of the human Cx36 promoter was identified and sequenced. Reporter-gene activity driven by various Cx36 promoter fragments indicated that Cx36 repression requires the presence of a highly conserved cAMP responsive element (CRE). Electrophoretic-mobility-shift assays revealed that, in the presence of a high glucose concentration, the binding activity of the repressor CRE-modulator 1 (CREM-1) is enhanced. Taken together, these data provide evidence that glucose represses the expression of Cx36 through the cAMP-PKA pathway, which activates a member of the CRE binding protein family.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inorganic phosphate (Pi) is one of the most limiting nutrients for plant growth in both natural and agricultural contexts. Pi-deficiency leads to a strong decrease in shoot growth, and triggers extensive changes at the developmental, biochemical and gene expression levels that are presumably aimed at improving the acquisition of this nutrient and sustaining growth. The Arabidopsis thaliana PHO1 gene has previously been shown to participate in the transport of Pi from roots to shoots, and the null pho1 mutant has all the hallmarks associated with shoot Pi deficiency. We show here that A. thaliana plants with a reduced expression of PHO1 in roots have shoot growth similar to Pi-sufficient plants, despite leaves being strongly Pi deficient. Furthermore, the gene expression profile normally triggered by Pi deficiency is suppressed in plants with low PHO1 expression. At comparable levels of shoot Pi supply, the wild type reduces shoot growth but maintains adequate shoot vacuolar Pi content, whereas the PHO1 underexpressor maintains maximal growth with strongly depleted Pi reserves. Expression of the Oryza sativa (rice) PHO1 ortholog in the pho1 null mutant also leads to plants that maintain normal growth and suppression of the Pi-deficiency response, despite the low shoot Pi. These data show that it is possible to unlink low shoot Pi content with the responses normally associated with Pi deficiency through the modulation of PHO1 expression or activity. These data also show that reduced shoot growth is not a direct consequence of Pi deficiency, but is more likely to be a result of extensive gene expression reprogramming triggered by Pi deficiency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polymorphonuclear neutrophils (PMN) are key components of the inflammatory response contributing to the development of pathogen-specific immune responses. Following infection with Leishmania major, neutrophils are recruited within hours to the site of parasite inoculation. C57BL/6 mice are resistant to infection, and BALB/c mice are susceptible to infection, developing unhealing, inflammatory lesions. In this report, we investigated the expression of cell surface integrins, TLRs, and the secretion of immunomodulatory cytokines by PMN of both strains of mice, in response to infection with L. major. The parasite was shown to induce CD49d expression in BALB/c-inflammatory PMN, and expression of CD49d remained at basal levels in C57BL/6 PMN. Equally high levels of CD11b were expressed on PMN from both strains. In response to L. major infection, the levels of TLR2, TLR7, and TLR9 mRNA were significantly higher in C57BL/6 than in BALB/c PMN. C57BL/6 PMN secreted biologically active IL-12p70 and IL-10. In contrast, L. major-infected BALB/c PMN transcribed and secreted high levels of IL-12p40 but did not secrete biologically active IL-12p70. Furthermore, IL-12p40 was shown not to associate with IL-23 p19 but formed IL-12p40 homodimers with inhibitory activity. No IL-10 was secreted by BALB/c PMN. Thus, following infection with L. major, in C57BL/6 mice, PMN could constitute one of the earliest sources of IL-12, and in BALB/c mice, secretion of IL-12p40 could contribute to impaired, early IL-12 signaling. These distinct PMN phenotypes may thus influence the development of L. major-specific immune response.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: We present the results of EGASP, a community experiment to assess the state-of-the-art in genome annotation within the ENCODE regions, which span 1% of the human genome sequence. The experiment had two major goals: the assessment of the accuracy of computational methods to predict protein coding genes; and the overall assessment of the completeness of the current human genome annotations as represented in the ENCODE regions. For the computational prediction assessment, eighteen groups contributed gene predictions. We evaluated these submissions against each other based on a 'reference set' of annotations generated as part of the GENCODE project. These annotations were not available to the prediction groups prior to the submission deadline, so that their predictions were blind and an external advisory committee could perform a fair assessment. RESULTS: The best methods had at least one gene transcript correctly predicted for close to 70% of the annotated genes. Nevertheless, the multiple transcript accuracy, taking into account alternative splicing, reached only approximately 40% to 50% accuracy. At the coding nucleotide level, the best programs reached an accuracy of 90% in both sensitivity and specificity. Programs relying on mRNA and protein sequences were the most accurate in reproducing the manually curated annotations. Experimental validation shows that only a very small percentage (3.2%) of the selected 221 computationally predicted exons outside of the existing annotation could be verified. CONCLUSION: This is the first such experiment in human DNA, and we have followed the standards established in a similar experiment, GASP1, in Drosophila melanogaster. We believe the results presented here contribute to the value of ongoing large-scale annotation projects and should guide further experimental methods when being scaled up to the entire human genome sequence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

5-aminosalicylic acid (5-ASA) is an antiinflammatory drug widely used in the treatment of inflammatory bowel diseases. It is known to inhibit the production of cytokines and inflammatory mediators, but the mechanism underlying the intestinal effects of 5-ASA remains unknown. Based on the common activities of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) ligands and 5-ASA, we hypothesized that this nuclear receptor mediates 5-ASA therapeutic action. To test this possibility, colitis was induced in heterozygous PPAR-gamma(+/-) mice and their wild-type littermates, which were then treated with 5-ASA. 5-ASA treatment had a beneficial effect on colitis only in wild-type and not in heterozygous mice. In epithelial cells, 5-ASA increased PPAR-gamma expression, promoted its translocation from the cytoplasm to the nucleus, and induced a modification of its conformation permitting the recruitment of coactivators and the activation of a peroxisome-proliferator response element-driven gene. Validation of these results was obtained with organ cultures of human colonic biopsies. These data identify PPAR-gamma as a target of 5-ASA underlying antiinflammatory effects in the colon.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Expression of laminin-5 alpha3, beta3 and gamma2 protein subunits was investigated in colorectal adenocarcinomas using immunostaining and confocal microscopy. The laminin-5 heterotrimer was found in basement membranes and as extracellular deposits in tumor stroma. In contrast to the alpha3 subunit, which was under-expressed, the gamma2 and beta3 subunits were detected in the cytoplasm of carcinoma cells dissociating (budding) from neoplastic tubules, suggestive of focal alterations in laminin-5 assembly and secretion. Laminin-5 gamma2 or beta3 subunit-reactive budding carcinoma cells expressed cytokeratins but not vimentin; they did not proliferate and were not apoptotic. Furthermore, expression of laminin-5 gamma2 and beta3 subunits in budding cells was associated with focal under-expression of the E-cadherin-beta-catenin complex. Results from xenograft experiments showed that budding activity in colorectal adenocarcinomas could be suppressed when these tumors grew at ectopic s.c. sites in nude mice. In vitro, cultured colon carcinoma cells, but not adenoma-derived tumor cells, shared the laminin-5 phenotype expressed by carcinoma cells in vivo. Using colon carcinoma cell lines implanted orthotopically and invading the cecum of nude mice, the laminin-5-associated budding was restored, indicating that this phenotype is not only determined by tumor cell properties but also dependent on the tissue micro-environment. Our results indicate that both laminin-5 alpha3 subunit expression and cell-cell cohesiveness are altered in budding carcinoma cells, which we consider to be actively invading. We propose that the local tissue micro-environment contributes to these events.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Cleavage of messenger RNA (mRNA) precursors is an essential step in mRNA maturation. The signal recognized by the cleavage enzyme complex has been characterized as an A rich region upstream of the cleavage site containing a motif with consensus AAUAAA, followed by a U or UG rich region downstream of the cleavage site. RESULTS: We studied these signals using exhaustive databases of cleavage sites obtained from aligning raw expressed sequence tags (EST) sequences to genomic sequences in Homo sapiens and Drosophila melanogaster. These data show that the polyadenylation signal is highly conserved in human and fly. In addition, de novo motif searches generated a refined description of the U-rich downstream sequence (DSE) element, which shows more divergence between the two species. These refined motifs are applied, within a Hidden Markov Model (HMM) framework, to predict mRNA cleavage sites. CONCLUSION: We demonstrate that the DSE is a specific motif in both human and Drosophila. These findings shed light on the sequence correlates of a highly conserved biological process, and improve in silico prediction of 3' mRNA cleavage and polyadenylation sites.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Adherent cells from murine long-term marrow cultures (LTMC) were examined for presence of mRNA for granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 3 (Il-3). Six hours after medium replacement, GM-CSF mRNA was detected but was no longer detectable 24 h after feeding; Il-3 mRNA was not detected at any time. Neutralizing antibodies against these factors had no effect on hemopoiesis. Exogenous Il-3 increased cell production, notably mature erythroid progenitors, whereas GM-CSF had little long-term effect even at high concentrations. Furthermore, GM-CSF appeared to be specifically removed from the medium, whereas virtually all of the Il-3 could be recovered under identical incubation conditions. These results show that Il-3 is not required for maintaining long-term hemopoiesis in vitro, whereas the precise role of GM-CSF in this system remains unclear.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Assessing bacterial viability by molecular markers might help accelerate the measurement of antibiotic-induced killing. This study investigated whether rRNA could be suitable for this purpose. Cultures of penicillin-susceptible and penicillin-tolerant (Tol1 mutant) Streptococcus gordonii were exposed to mechanistically different penicillin and levofloxacin. Bacterial survival was assessed by viable counts and compared to quantitative real-time PCR amplification of either the 16S rRNA genes or the 16S rRNA, following reverse transcription. Penicillin-susceptible S. gordonii lost > or =4 log(10) CFU/ml of viability over 48 h of penicillin treatment. In comparison, the Tol1 mutant lost < or =1 log(10) CFU/ml. Amplification of a 427-bp fragment of 16S rRNA genes yielded amplicons that increased proportionally to viable counts during bacterial growth but did not decrease during drug-induced killing. In contrast, the same 427-bp fragment amplified from 16S rRNA paralleled both bacterial growth and drug-induced killing. It also differentiated between penicillin-induced killing of the parent and the Tol1 mutant (> or =4 log(10) CFU/ml and < or =1 log(10) CFU/ml, respectively) and detected killing by mechanistically unrelated levofloxacin. Since large fragments of polynucleotides might be degraded faster than smaller fragments, the experiments were repeated by amplifying a 119-bp region internal to the original 427-bp fragment. The amount of 119-bp amplicons increased proportionally to viability during growth but remained stable during drug treatment. Thus, 16S rRNA was a marker of antibiotic-induced killing, but the size of the amplified fragment was critical for differentiation between live and dead bacteria.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Peptide Ags presented by class I MHC molecules on human melanomas and that are recognized by CD8(+) T cells are the subjects of many studies of antitumor immunity and represent attractive candidates for therapeutic approaches. However, no direct quantitative measurements exist to reveal their expression hierarchy on the cell surface. Using novel recombinant Abs which bind these Ags with a peptide-specific, MHC-restricted manner, we demonstrate a defined pattern of expression hierarchy of peptide-HLA-A2 complexes derived from three major differentiation Ags: gp100, Melan-A/Mart-1, and tyrosinase. Studying melanoma cell lines derived from multiple patients, we reveal a surprisingly high level of presentation of tyrosinase-derived complexes and moderate to very low expression of complexes derived from other Ags. No correlation between Ag presentation and mRNA expression was found; however, protein stability may play a major role. These results provide new insights into the characteristics of Ag presentation and are particularly important when such targets are being considered for immunotherapy. These results may shed new light on relationships between Ag presentation and immune response to cancer Ags.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neuropeptide Y (NPY) is a key modulator of the autonomic nervous system playing pivotal roles in cardiovascular and neuronal functions. In this study, we assessed the cellular localization and gene expression of NPY in rat kidneys. We also examined the relationship between NPY gene expression and renin in two rat models of hypertension (two-kidney, one-clip renal hypertension (2K1C), and deoxycorticosterone-salt-induced hypertension (DOCA-salt)) characterized by a similar blood pressure elevation. In situ hybridization and immunohistochemistry, using anti-NPY or anti-C-flanking peptide of NPY (CPON) antibodies, showed that NPY transcript and protein were colocalized in the tubules of rat kidneys. During experimental hypertension, NPY mRNA was decreased in both kidneys of the 2K1C animals, but not in the kidney of DOCA-salt rats. In 2K1C rats, renal NPY content was also decreased. The difference in NPY gene expression between 2K1C rats (a high renin model of hypertension) and DOCA-salt rats (a low renin model of hypertension) suggests that circulating angiotensin II plays a role in local renal NPY gene expression and that the elevated blood pressure per se is not the primary factor responsible for the control of NPY gene expression in the kidney.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Functional high-affinity interleukin-2 receptors (IL-2R) contain three transmembrane proteins, IL-2R alpha, beta and gamma. We have investigated the expression of IL-2R alpha and beta genes in immature mouse thymocytes. Previous work has shown that during differentiation these cells transiently express IL-2R alpha on their surface. Stimulation of IL-2R alpha+ and IL-2R alpha- immature thymocytes with phorbol 12-myristate 13-acetate and calcium ionophore induces synthesis of IL-2R alpha and IL-2R beta mRNA. Most of this response depends on autocrine stimulation by IL-2. IL-1 synergizes with IL-2 to induce a 120-fold increase in IL-2R alpha mRNA and a 14-fold increase in IL-2R beta mRNA levels. A large proportion of the stimulated cells contains both transcripts. These interleukins do not induce any differentiation to more mature phenotypes. Collectively, these results show that IL-2 plays a major role in the regulation of IL-2R expression in normal immature thymocyte. We suggest that this response to interleukins may be part of a homeostatic mechanism to increase the production of immature thymocytes during stress.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

If the importance of triiodothyronine (T3) on brain development including myelinogenesis has long been recognized, its mechanism of action at the gene level is still not fully elucidated. We studied the effect of T3 on the expression of myelin protein genes in aggregating brain cell cultures. T3 increases the concentrations of mRNA transcribed from the following four myelin protein genes: myelin basic protein (Mbp), myelin-associated glycoprotein (Mag), proteolipid protein (Plp), and 2',3'-cyclic nucleotide 3'-phosphodiesterase (Cnp). T3 is not only a triggering signal for oligodendrocyte differentiation, but it has continuous stimulatory effects on myelin gene expression. Transcription in isolated nuclei experiments shows that T3 increases Mag and Cnp transcription rates. After inhibiting transcription with actinomycin D, we measured the half-lives of specific mRNAs. Our results show that T3 increases the stability of mRNA for myelin basic protein, and probably proteolipid protein. In vitro translation followed by myelin basic protein-specific immunoprecipitation showed a direct stimulatory effect of T3 on myelin basic protein mRNA translation. Moreover, this stimulation was higher when the mRNA was already stabilized in culture, indicating that stabilization is achieved through mRNA structural modifications. These results demonstrate the diverse and multiple mechanisms of T3 stimulation of myelin protein genes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A key feature of memory processes is to link different input signals by association and to preserve this coupling at the level of synaptic connections. Late-phase long-term potentiation (L-LTP), a form of synaptic plasticity thought to encode long-term memory, requires gene transcription and protein synthesis. In this study, we report that a recently cloned coactivator of cAMP-response element-binding protein (CREB), called transducer of regulated CREB activity 1 (TORC1), contributes to this process by sensing the coincidence of calcium and cAMP signals in neurons and by converting it into a transcriptional response that leads to the synthesis of factors required for enhanced synaptic transmission. We provide evidence that TORC1 is involved in L-LTP maintenance at the Schaffer collateral-CA1 synapses in the hippocampus.