953 resultados para RESERVOIRS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite effective treatment, HIV is not completely eliminated from the infected organism because of the existence of viral reservoirs. A major reservoir consists of infected resting CD4+ T cells, mostly of memory type, that persist over time due to the stable proviral insertion and a long cellular lifespan. Resting cells do not produce viral particles and are protected from viral-induced cytotoxicity or immune killing. However, these latently infected cells can be reactivated by stochastic events or by external stimuli. The present review focuses on novel genome-wide technologies applied to the study of integration, transcriptome, and proteome characteristics and their recent contribution to the understanding of HIV latency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mesozoic and Neogene carbonates located in the Valencia Trough (offshore Spain, western Mediterranean Sea)are oil reservoirs. This paper investigates the diagenetic evolution of the Upper Jurassic limestones, currently dolomitized, that constitute the main reservoir of the Casablanca oil field. Core samples from Casablanca-1A well have been studied to determine the diagenetic products and their relation with porosity evolution, and to reconstruct the fluid flow history prior to and during oil emplacement. On the basis of petrological observations and geochemical analyses (major, minor and trace element composition and oxygen, carbon and strontium isotope composition), a major dolomitization event is recognized postdating subaerial exposure, erosion and karstification. The dolomitization event originated two replacive dolomites (RD1 and RD2) and two dolomite cements (saddle dolomite cement, SDC, and milky-white dolomite cement, MDC)which are partially cogenetic. RD1, RD2 and SDC precipitated at increasing temperatures (over 60ºC and below 110ºC), probably from meteoric water mixed with marine water. The last dolomite type milky-white dolomite cement) precipitated with increasing burial conditions and by arrival of hydrothermal fluids during the Miocene. The post-dolomitization sequence comprises precipitation of calcite cement and partial calcitization of all previous dolomites. The oxygen, carbon and strontium isotope compositions suggest that this calcite cementation occurred from meteoric waters mixed with Burdigalian - Langhian marine waters trapped in the sediments and expelled by compaction in the moderate to deep burial realm. Normal faults were the conduits for upward migration of these fluids as well as for later oil expulsion from the Burdigalian - Langhian source rocks. Late corrosion associated with organic acid-enriched fluids took place prior or simultaneously to oil migration during the Pliocene, enhancing porosity and increasing eservoir quality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The perceived low levels of genetic diversity, poor interspecific competitive and defensive ability, and loss of dispersal capacities of insular lineages have driven the view that oceanic islands are evolutionary dead ends. Focusing on the Atlantic bryophyte flora distributed across the archipelagos of the Azores, Madeira, the Canary Islands, Western Europe, and northwestern Africa, we used an integrative approach with species distribution modeling and population genetic analyses based on approximate Bayesian computation to determine whether this view applies to organisms with inherent high dispersal capacities. Genetic diversity was found to be higher in island than in continental populations, contributing to mounting evidence that, contrary to theoretical expectations, island populations are not necessarily genetically depauperate. Patterns of genetic variation among island and continental populations consistently fitted those simulated under a scenario of de novo foundation of continental populations from insular ancestors better than those expected if islands would represent a sink or a refugium of continental biodiversity. We, suggest that the northeastern Atlantic archipelagos have played a key role as a stepping stone for transoceanic migrants. Our results challenge the traditional notion that oceanic islands are the end of the colonization road and illustrate the significant role of oceanic islands as reservoirs of novel biodiversity for the assembly of continental floras.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Characterizing the geological features and structures in three dimensions over inaccessible rock cliffs is needed to assess natural hazards such as rockfalls and rockslides and also to perform investigations aimed at mapping geological contacts and building stratigraphy and fold models. Indeed, the detailed 3D data, such as LiDAR point clouds, allow to study accurately the hazard processes and the structure of geologic features, in particular in vertical and overhanging rock slopes. Thus, 3D geological models have a great potential of being applied to a wide range of geological investigations both in research and applied geology projects, such as mines, tunnels and reservoirs. Recent development of ground-based remote sensing techniques (LiDAR, photogrammetry and multispectral / hyperspectral images) are revolutionizing the acquisition of morphological and geological information. As a consequence, there is a great potential for improving the modeling of geological bodies as well as failure mechanisms and stability conditions by integrating detailed remote data. During the past ten years several large rockfall events occurred along important transportation corridors where millions of people travel every year (Switzerland: Gotthard motorway and railway; Canada: Sea to sky highway between Vancouver and Whistler). These events show that there is still a lack of knowledge concerning the detection of potential rockfalls, making mountain residential settlements and roads highly risky. It is necessary to understand the main factors that destabilize rocky outcrops even if inventories are lacking and if no clear morphological evidences of rockfall activity are observed. In order to increase the possibilities of forecasting potential future landslides, it is crucial to understand the evolution of rock slope stability. Defining the areas theoretically most prone to rockfalls can be particularly useful to simulate trajectory profiles and to generate hazard maps, which are the basis for land use planning in mountainous regions. The most important questions to address in order to assess rockfall hazard are: Where are the most probable sources for future rockfalls located? What are the frequencies of occurrence of these rockfalls? I characterized the fracturing patterns in the field and with LiDAR point clouds. Afterwards, I developed a model to compute the failure mechanisms on terrestrial point clouds in order to assess the susceptibility to rockfalls at the cliff scale. Similar procedures were already available to evaluate the susceptibility to rockfalls based on aerial digital elevation models. This new model gives the possibility to detect the most susceptible rockfall sources with unprecented detail in the vertical and overhanging areas. The results of the computation of the most probable rockfall source areas in granitic cliffs of Yosemite Valley and Mont-Blanc massif were then compared to the inventoried rockfall events to validate the calculation methods. Yosemite Valley was chosen as a test area because it has a particularly strong rockfall activity (about one rockfall every week) which leads to a high rockfall hazard. The west face of the Dru was also chosen for the relevant rockfall activity and especially because it was affected by some of the largest rockfalls that occurred in the Alps during the last 10 years. Moreover, both areas were suitable because of their huge vertical and overhanging cliffs that are difficult to study with classical methods. Limit equilibrium models have been applied to several case studies to evaluate the effects of different parameters on the stability of rockslope areas. The impact of the degradation of rockbridges on the stability of large compartments in the west face of the Dru was assessed using finite element modeling. In particular I conducted a back-analysis of the large rockfall event of 2005 (265'000 m3) by integrating field observations of joint conditions, characteristics of fracturing pattern and results of geomechanical tests on the intact rock. These analyses improved our understanding of the factors that influence the stability of rock compartments and were used to define the most probable future rockfall volumes at the Dru. Terrestrial laser scanning point clouds were also successfully employed to perform geological mapping in 3D, using the intensity of the backscattered signal. Another technique to obtain vertical geological maps is combining triangulated TLS mesh with 2D geological maps. At El Capitan (Yosemite Valley) we built a georeferenced vertical map of the main plutonio rocks that was used to investigate the reasons for preferential rockwall retreat rate. Additional efforts to characterize the erosion rate were made at Monte Generoso (Ticino, southern Switzerland) where I attempted to improve the estimation of long term erosion by taking into account also the volumes of the unstable rock compartments. Eventually, the following points summarize the main out puts of my research: The new model to compute the failure mechanisms and the rockfall susceptibility with 3D point clouds allows to define accurately the most probable rockfall source areas at the cliff scale. The analysis of the rockbridges at the Dru shows the potential of integrating detailed measurements of the fractures in geomechanical models of rockmass stability. The correction of the LiDAR intensity signal gives the possibility to classify a point cloud according to the rock type and then use this information to model complex geologic structures. The integration of these results, on rockmass fracturing and composition, with existing methods can improve rockfall hazard assessments and enhance the interpretation of the evolution of steep rockslopes. -- La caractérisation de la géologie en 3D pour des parois rocheuses inaccessibles est une étape nécessaire pour évaluer les dangers naturels tels que chutes de blocs et glissements rocheux, mais aussi pour réaliser des modèles stratigraphiques ou de structures plissées. Les modèles géologiques 3D ont un grand potentiel pour être appliqués dans une vaste gamme de travaux géologiques dans le domaine de la recherche, mais aussi dans des projets appliqués comme les mines, les tunnels ou les réservoirs. Les développements récents des outils de télédétection terrestre (LiDAR, photogrammétrie et imagerie multispectrale / hyperspectrale) sont en train de révolutionner l'acquisition d'informations géomorphologiques et géologiques. Par conséquence, il y a un grand potentiel d'amélioration pour la modélisation d'objets géologiques, ainsi que des mécanismes de rupture et des conditions de stabilité, en intégrant des données détaillées acquises à distance. Pour augmenter les possibilités de prévoir les éboulements futurs, il est fondamental de comprendre l'évolution actuelle de la stabilité des parois rocheuses. Définir les zones qui sont théoriquement plus propices aux chutes de blocs peut être très utile pour simuler les trajectoires de propagation des blocs et pour réaliser des cartes de danger, qui constituent la base de l'aménagement du territoire dans les régions de montagne. Les questions plus importantes à résoudre pour estimer le danger de chutes de blocs sont : Où se situent les sources plus probables pour les chutes de blocs et éboulement futurs ? Avec quelle fréquence vont se produire ces événements ? Donc, j'ai caractérisé les réseaux de fractures sur le terrain et avec des nuages de points LiDAR. Ensuite, j'ai développé un modèle pour calculer les mécanismes de rupture directement sur les nuages de points pour pouvoir évaluer la susceptibilité au déclenchement de chutes de blocs à l'échelle de la paroi. Les zones sources de chutes de blocs les plus probables dans les parois granitiques de la vallée de Yosemite et du massif du Mont-Blanc ont été calculées et ensuite comparés aux inventaires des événements pour vérifier les méthodes. Des modèles d'équilibre limite ont été appliqués à plusieurs cas d'études pour évaluer les effets de différents paramètres sur la stabilité des parois. L'impact de la dégradation des ponts rocheux sur la stabilité de grands compartiments de roche dans la paroi ouest du Petit Dru a été évalué en utilisant la modélisation par éléments finis. En particulier j'ai analysé le grand éboulement de 2005 (265'000 m3), qui a emporté l'entier du pilier sud-ouest. Dans le modèle j'ai intégré des observations des conditions des joints, les caractéristiques du réseau de fractures et les résultats de tests géoméchaniques sur la roche intacte. Ces analyses ont amélioré l'estimation des paramètres qui influencent la stabilité des compartiments rocheux et ont servi pour définir des volumes probables pour des éboulements futurs. Les nuages de points obtenus avec le scanner laser terrestre ont été utilisés avec succès aussi pour produire des cartes géologiques en 3D, en utilisant l'intensité du signal réfléchi. Une autre technique pour obtenir des cartes géologiques des zones verticales consiste à combiner un maillage LiDAR avec une carte géologique en 2D. A El Capitan (Yosemite Valley) nous avons pu géoréferencer une carte verticale des principales roches plutoniques que j'ai utilisé ensuite pour étudier les raisons d'une érosion préférentielle de certaines zones de la paroi. D'autres efforts pour quantifier le taux d'érosion ont été effectués au Monte Generoso (Ticino, Suisse) où j'ai essayé d'améliorer l'estimation de l'érosion au long terme en prenant en compte les volumes des compartiments rocheux instables. L'intégration de ces résultats, sur la fracturation et la composition de l'amas rocheux, avec les méthodes existantes permet d'améliorer la prise en compte de l'aléa chute de pierres et éboulements et augmente les possibilités d'interprétation de l'évolution des parois rocheuses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given their central role in mercury (Hg) excretion and suitability as reservoirs, bird feathers are useful Hg biomonitors. Nevertheless, the interpretation of Hg concentrations is still questioned as a result of a poor knowledge of feather physiology and mechanisms affecting Hg deposition. Given the constraints of feather availability to ecotoxicological studies, we tested the effect of intra-individual differences in Hg concentrations according to feather type (body vs. flight feathers), position in the wing and size (mass and length) in order to understand how these factors could affect Hg estimates. We measured Hg concentration of 154 feathers from 28 un-moulted barn owls (Tyto alba), collected dead on roadsides. Median Hg concentration was 0.45 (0.076-4.5) mg kg(-1) in body feathers, 0.44 (0.040-4.9) mg kg(-1) in primary and 0.60 (0.042-4.7) mg kg(-1) in secondary feathers, and we found a poor effect of feather type on intra-individual Hg levels. We also found a negative effect of wing feather mass on Hg concentration but not of feather length and of its position in the wing. We hypothesize that differences in feather growth rate may be the main driver of between-feather differences in Hg concentrations, which can have implications in the interpretation of Hg concentrations in feathers. Finally, we recommend that, whenever possible, several feathers from the same individual should be analysed. The five innermost primaries have lowest mean deviations to both between-feather and intra-individual mean Hg concentration and thus should be selected under restrictive sampling scenarios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water withdrawal from Mediterranean reservoirs in summer is usually very high. Because of this, stratification is often continuous and far from the typical two-layered structure, favoring the excitation of higher vertical modes. The analysis of wind, temperature, and current data from Sau reservoir (Spain) shows that the third vertical mode of the internal seiche (baroclinic mode) dominated the internal wave field at the beginning of September 2003. We used a continuous stratification two-dimensional model to calculate the period and velocity distribution of the various modes of the internal seiche, and we calculated that the period of the third vertical mode is ;24 h, which coincides with the period of the dominating winds. As a result of the resonance between the third mode and the wind, the other oscillation modes were not excited during this period

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The causal mechanism and seasonal evolution of the internal wave field in a deep, warm, monomictic reservoirare examined through the analysis of field observations and numerical techniques. The study period extends fromthe onset of thermal stratification in the spring until midsummer in 2005. During this time, wind forcing wasperiodic, with a period of 24 h (typical of land–sea breezes), and the thermal structure in the lake wascharacterized by the presence of a shallow surface layer overlying a thick metalimnion, typical of small to mediumsized reservoirs with deep outtakes. Basin-scale internal seiches of high vertical mode (ranging from mode V3 toV5) were observed in the metalimnion. The structure of the dominant modes of oscillation changed asstratification evolved on seasonal timescales, but in all cases, their periods were close to that of the local windforcing (i.e., 24 h), suggesting a resonant response. Nonresonant oscillatory modes of type V1 and V2 becamedominant after large frontal events, which disrupted the diurnal periodicity of the wind forcing

Relevância:

10.00% 10.00%

Publicador:

Resumo:

UNLABELLED: Whole-genome sequencing (WGS) of 228 isolates was used to elucidate the origin and dynamics of a long-term outbreak of methicillin-resistant Staphylococcus aureus (MRSA) sequence type 228 (ST228) SCCmec I that involved 1,600 patients in a tertiary care hospital between 2008 and 2012. Combining of the sequence data with detailed metadata on patient admission and movement confirmed that the outbreak was due to the transmission of a single clonal variant of ST228, rather than repeated introductions of this clone into the hospital. We note that this clone is significantly more frequently recovered from groin and rectal swabs than other clones (P < 0.0001) and is also significantly more transmissible between roommates (P < 0.01). Unrecognized MRSA carriers, together with movements of patients within the hospital, also seem to have played a major role. These atypical colonization and transmission dynamics can help explain how the outbreak was maintained over the long term. This "stealthy" asymptomatic colonization of the gut, combined with heightened transmissibility (potentially reflecting a role for environmental reservoirs), means the dynamics of this outbreak share some properties with enteric pathogens such as vancomycin-resistant enterococci or Clostridium difficile. IMPORTANCE: Using whole-genome sequencing, we showed that a large and prolonged outbreak of methicillin-resistant Staphylococcus aureus was due to the clonal spread of a specific strain with genetic elements adapted to the hospital environment. Unrecognized MRSA carriers, the movement of patients within the hospital, and the low detection with clinical specimens were also factors that played a role in this occurrence. The atypical colonization of the gut means the dynamics of this outbreak may share some properties with enteric pathogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seabirds act as natural reservoirs to Lyme borreliosis spirochetes and may play a significant role in the global circulation of these pathogens. While Borrelia burgdorferi sensu lato (Bbsl) has been shown to occur in ticks collected from certain locations in the North Pacific, little is known about interspecific differences in exposure within the seabird communities of this region. We examined the prevalence of anti-Bbsl antibodies in 805 individuals of nine seabird species breeding across the North Pacific. Seroprevalence varied strongly among species and locations. Murres (Uria spp.) showed the highest antibody prevalence and may play a major role in facilitating Bbsl circulation at a worldwide scale. Other species showed little or no signs of exposure, despite being present in multispecific colonies with seropositive birds. Complex dynamics may be operating in this wide scale, natural hostparasite system, possibly mediated by the host immune system and host specialization of the tick vector.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a system for electrochemical hydride generation using flow-injection and atomic absorption spectrometry to determine selenium in biological materials. The electrolytic cell was constructed by assembling two reservoirs, one for the sample and the other for the electrolytic solution separated by a Nafion membrane. Each compartment had a Pt electrode. The sample and electrolyte flow-rates, acidic media, and applied current were adjusted to attain the best analytical performance and ensure the membrane lifetime. The atomisation system used a T quartz tube in an air-LPG flame. The composition of the flame, the observation height, and the argon flow rate used to carry the hydrides were critically investigated. The system allowed to perform thirty determinations per hour with a detection limit of 10 mug L-1 of Se. Relative standard deviations were in general lower than 1.5% for a solution containing 20.0 and 34.0 mug L-1 of Se in a typical sample digest. Accuracy was assessed analysing the certified materials: rice flour (NIST-1568) from National Institute of Standard and Technology and dried fish (MA-A-2), whole animal blood (A-2/1974) from the International Atomic Energy Agency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The salt accumulation process in some reservoirs of regular and irregular use (from 10 to 50 years of constrution), located in the Southeast of Bahia State was evaluated. Inductively coupled plasma atomic emission spectrometry was used to evaluate the concentrations of Na, K, Ca and Mg in water samples from inside and upstream of the reservoirs. The results showed that for reservoirs of irregular use, the salt accumulation, indicated by the tracer Na, increases with the age of the reservoirs, however for the reservoirs of regular use the hydraulic retention time is the main parameter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Artificial reefs have barely been used in Neotropical reservoirs (about five studies in three reservoirs), despite their potential as a fishery management tool to create new habitats and also to understand fish ecology. We experimentally assessed how reef material (ceramic, concrete, and PVC) and time modulated fish colonization of artificial reefs deployed in Itaipu Reservoir, a large reservoir of the mainstem Parana´ River, Brazil. Fish richness, abundance, and biomass were significantly greater in the reef treatments than at control sites. Among the experimental reefs, ceramic followed by the concrete treatments were the materials most effectively colonized, harboring the majority of the 13 fish species recorded. Although dependent on material type, many of the regularities of ecological successions were also observed in the artificial reefs, including decelerating increases in species richness, abundance, mean individual size, and species loss rates with time and decelerating decreases of species gain and turnover rates. Species composition also varied with material type and time, together with suites of life history traits: more equilibrium species (i.e., fishes of intermediate size that often exhibit parental care and produce fewer but larger offspring) of the Winemiller-Rose model of fish life histories prevailed in later successional stages. Overall, our study suggests that experimental reefs are a promising tool to understand ecological succession of fish assemblages, particularly in tropical ecosystems given their high species richness and low seasonality

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mediterranean endemic freshwater fish are among the most threatened biota in the world. Distinguishing the role of different extinction drivers and their potential interactions is crucial for achieving conservation goals. While some authors argue that invasive species are a main driver of native species declines, others see their proliferation as a co-occurring process to biodiversity loss driven by habitat degradation. It is difficult to discern between the two potential causes given that few invaded ecosystems are free from habitat degradation, and that both factors may interact in different ways. Here we analyze the relative importance of habitat degradation and invasive species in the decline of native fish assemblages in the Guadiana River basin (southwestern Iberian Peninsula) using an information theoretic approach to evaluate interaction pathways between invasive species and habitat degradation (structural equation modeling, SEM). We also tested the possible changes in the functional relationships between invasive and native species, measured as the per capita effect of invasive species, using ANCOVA. We found that the abundance of invasive species was the best single predictor of natives’ decline and had the highest Akaike weight among the set of predictor variables examined. Habitat degradation neither played an active role nor influenced the per capita effect of invasive species on natives. Our analyses indicated that downstream reaches and areas close to reservoirs had the most invaded fish assemblages, independently of their habitat degradation status. The proliferation of invasive species poses a strong threat to the persistence of native assemblages in highly fluctuating environments. Therefore, conservation efforts to reduce native freshwater fish diversity loss in Mediterranean rivers should focus on mitigating the effect of invasive species and preventing future invasions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The identification and characterization of the hydrochemistry of the groundwaters has been done for seven wells. The sampling occurred during three bimonthly campaigns. The results classified the waters as of the calcium bicarbonated type for the majority of the samples, except for one well, whose composition is of the sodium bicarbonated type. The major ions found and how they determine the quality parameters are consistent with the reactions of mineral dissolution of the majority of volcanic rocks and the reactions with intrusion of alkaline rock in only one well. Anomalous values of nitrate in some wells alert to the impact of especially polluting sources at the time the reservoirs of the hydroeletric plant were formed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polysaccharide-based drilling fluids have been often applied in horizontal wells of petroleum reservoirs in Campos, Rio de Janeiro. The present study aimed to understand the mechanism of adsorption and desorption of the drill-in fluid, xanthan, modified starch and lubricant on SiO2 by means of ellipsometry. The effect of pH and brine on the mean thickness (D) of adsorbed layer was systematically investigated. The adsorption was mainly favored under alkaline conditions. A model has been proposed to explain this effect. The adsorption isotherms determined separately for xanthan and starch on SiO2 surfaces could be fitted with the Langmuir model, which yielded similar adsorption constant values.