928 resultados para RARE-EARTH IONS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigations of borehole waters sampled in Hole 504B during Leg 92 revealed changes in major-ion composition similar to changes observed previously (during Leg 83). The uniformity of chloride concentrations with increasing depth suggests efficient downhole mixing processes along density gradients caused by large temperature gradients. Chemical and mineralogical studies of suspended drilling mud (bentonite) suggest that this material has undergone substantial alteration and that CaSO4 (anhydrite/gypsum) has precipitated in the deeper parts of the hole. Rare earth element studies suggest contributions of both the bentonites and the basalts to the REE distributions. Studies of the isotopic composition (87Sr/86Sr) of dissolved strontium indicate a strong contribution of basaltic nonradiogenic strontium, although differences between the Leg 83 and Leg 92 data indicate an influence of bentonite during Leg 92. The oxygen isotope composition of the water does not change appreciably downhole. This uniformity can be understood in terms of high water-rock ratios and suggests that the chemical changes observed are due either to alteration processes involving bentonites and basaltic material from the walls of the hole or to exchange with formation fluids from the surrounding basement, which may have altered in composition at relatively high water-rock ratios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rare-earth element (REE) distributions in altered basalts and glasses collected during some Legs of the Deep Sea Drilling Project show that a fractionation of these elements occurs during submarine weathering. When the alteration is well-marked, the REE distribution in altered glasses shows an enrichment in light rare-earths relative to the fresh glass. In particular, Ce is selectively enriched in palagonitized glasses that comprise, besides polymetallic nodules, another phase liable to explain the Ce depletion in seawater. Taking in account these processes of submarine weathering of the oceanic crust, a geochemical balance of Ce between authigenic phases of the marine environment is attempted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Materials Central, Contract No. AF33(616)-5905, Project No. 7351."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present high spatial resolution ion-microprobe rare earth element (REE) data for discrete growth phases of complex polyphase zircons from early Archaean Amitsoq gneisses, outer Godthabsfjord, SW Greenland. In Matsuda diagrams, the two major growth phases, >3.8 Ga cores and ca. 3.65 Ga rims, have steep positive slopes from La to Lu, prominent positive Ce anomalies and negative Eu anomalies that are consistent with growth in a melt. Exceptions to this are non-cathodolurnmescent zircon developed between the cores and rims, sometimes truncating zoning in the cores, and late Archaean prismatic tip overgrowths, both of which exhibit flatter light REE (LREE) patterns and have small or no Eu anomaly, which we interpret as the result of metamorphism and/or small-degree, isolated partial melting. Our data support previous interpretations that the ca. 3.65 Ga zircon phase was generated in a melt, with the >3.8 Ga phase representing either original protolith zircons in a large degree partial melt or inherited zircons in an introduced magma. Regardless which of these two interpretations is correct for these, and similar, rocks in the outer GodthAbsfjord, the 3.65 Ga event will have profoundly affected isotopic systems and obscured beyond recognition any earlier igneous features such as cross-cutting relationships, which may only be assigned a minimum 3.65 Ga age. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

REE analyses were performed on authigenic illitic clay. minerals from Late Permian mudrocks, sandstones and bentonites from the Bowen Basin (Australia). The mixed-layer illite-smectite exhibit REE patterns with an obvious fractionation of the HREE from the LREE and MREE, which is an apparent function of degree of illitization reaction. The highly illitic (R greater than or equal to 3) illite-smectite from the northern Bowen Basin show a depletion of LREE relative to the less illitic (R=0 and 1) clays. In contrast, an enrichment of HREE for the illite-rich clays relative to less. illitic clays is evident for the southern Bowen Basin samples. The North American Shale Composite-normalized (La/Lu)(sn) ratios show negative correlations with the illite content in illite-smectite and positive correlations with the delta(18)O values of the clays for both the northern and southern Bowen Basin samples. These correlations indicate that the increasing depletion of LREE in hydrothermal fluids is a function of increasing water/rock ratios in the northern Bowen Basin. Good negative correlations between (La/Lu)(sn) ratios and illite content in illite-smectite from the southern Bowen Basin suggest the involvement of fluids with higher alkalinity and higher pH in low water/ rock ratio conditions. Increasing HREE enrichment with delta(18)O decrease indicates the effect of increasing temperature at low water/rock ratios in the southern Bowen Basin. Results of the present study confirm the conclusions of some earlier studies suggesting that REE in illitic clay minerals are mobile and fractionated during illitization and that this fact should be considered in studies of sedimentary processes and in identifying provenance. Moreover, our results show that REE systematic of illitic clay minerals can be applied as an useful technique to gain information about physico-chemical conditions during thermal and fluid flow events in certain sedimentary basins. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of different concentrations of individual additions of rare earth metals (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) on eutectic modification in Al-10mass%Si has been studied by thermal analysis and optical microscopy. According to the twin-plane re-entrant edge (TPRE) and impurity induced twinning mechanism, rare earth metals with atomic radii of about 1.65 times larger than that of silicon, are possible candidates for eutectic modification. All of the rare earth elements caused a depression of the eutectic growth temperature, but only Eu modified the eutectic silicon to a fibrous morphology. At best, the remaining elements resulted in only a small degree of refinement of the plate-like silicon. The samples were also quenched during the eutectic arrest to examine the eutectic solidification modes. Many of the rare-earth additions significantly altered the eutectic solidification mode from that of the unmodified alloy. It is concluded that the impurity induced twinning model of modification, based on atomic radius alone, is inadequate and other mechanisms are essential for the modification process. Furthermore, modification and the eutectic nucleation and growth modes are controlled independently of each other.