957 resultados para Quadratic polynomial


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This letter presents a new recursive method for computing discrete polynomial transforms. The method is shown for forward and inverse transforms of the Hermite, binomial, and Laguerre transforms. The recursive flow diagrams require only 2 additions, 2( +1) memory units, and +1multipliers for the +1-point Hermite and binomial transforms. The recursive flow diagram for the +1-point Laguerre transform requires 2 additions, 2( +1) memory units, and 2( +1) multipliers. The transform computation time for all of these transforms is ( )

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given the weight sequence for a subnormal recursively generated weighted shift on Hilbert space, one approach to the study of classes of operators weaker than subnormal has been to form a backward extension of the shift by prefixing weights to the sequence. We characterize positive quadratic hyponormality and revisit quadratic hyponormality of certain such backward extensions of arbitrary length, generalizing earlier results, and also show that a function apparently introduced as a matter of convenience for quadratic hyponormality actually captures considerable information about positive quadratic hyponormality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis develops high performance real-time signal processing modules for direction of arrival (DOA) estimation for localization systems. It proposes highly parallel algorithms for performing subspace decomposition and polynomial rooting, which are otherwise traditionally implemented using sequential algorithms. The proposed algorithms address the emerging need for real-time localization for a wide range of applications. As the antenna array size increases, the complexity of signal processing algorithms increases, making it increasingly difficult to satisfy the real-time constraints. This thesis addresses real-time implementation by proposing parallel algorithms, that maintain considerable improvement over traditional algorithms, especially for systems with larger number of antenna array elements. Singular value decomposition (SVD) and polynomial rooting are two computationally complex steps and act as the bottleneck to achieving real-time performance. The proposed algorithms are suitable for implementation on field programmable gated arrays (FPGAs), single instruction multiple data (SIMD) hardware or application specific integrated chips (ASICs), which offer large number of processing elements that can be exploited for parallel processing. The designs proposed in this thesis are modular, easily expandable and easy to implement. Firstly, this thesis proposes a fast converging SVD algorithm. The proposed method reduces the number of iterations it takes to converge to correct singular values, thus achieving closer to real-time performance. A general algorithm and a modular system design are provided making it easy for designers to replicate and extend the design to larger matrix sizes. Moreover, the method is highly parallel, which can be exploited in various hardware platforms mentioned earlier. A fixed point implementation of proposed SVD algorithm is presented. The FPGA design is pipelined to the maximum extent to increase the maximum achievable frequency of operation. The system was developed with the objective of achieving high throughput. Various modern cores available in FPGAs were used to maximize the performance and details of these modules are presented in detail. Finally, a parallel polynomial rooting technique based on Newton’s method applicable exclusively to root-MUSIC polynomials is proposed. Unique characteristics of root-MUSIC polynomial’s complex dynamics were exploited to derive this polynomial rooting method. The technique exhibits parallelism and converges to the desired root within fixed number of iterations, making this suitable for polynomial rooting of large degree polynomials. We believe this is the first time that complex dynamics of root-MUSIC polynomial were analyzed to propose an algorithm. In all, the thesis addresses two major bottlenecks in a direction of arrival estimation system, by providing simple, high throughput, parallel algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new anisotropic elastic-viscoplastic damage constitutive model for bone is proposed using an eccentric elliptical yield criterion and nonlinear isotropic hardening. A micromechanics-based multiscale homogenization scheme proposed by Reisinger et al. is used to obtain the effective elastic properties of lamellar bone. The dissipative process in bone is modeled as viscoplastic deformation coupled to damage. The model is based on an orthotropic ecuntric elliptical criterion in stress space. In order to simplify material identification, an eccentric elliptical isotropic yield surface was defined in strain space, which is transformed to a stress-based criterion by means of the damaged compliance tensor. Viscoplasticity is implemented by means of the continuous Perzyna formulation. Damage is modeled by a scalar function of the accumulated plastic strain D(κ) , reducing all element s of the stiffness matrix. A polynomial flow rule is proposed in order to capture the rate-dependent post-yield behavior of lamellar bone. A numerical algorithm to perform the back projection on the rate-dependent yield surface has been developed and implemented in the commercial finite element solver Abaqus/Standard as a user subroutine UMAT. A consistent tangent operator has been derived and implemented in order to ensure quadratic convergence. Correct implementation of the algorithm, convergence, and accuracy of the tangent operator was tested by means of strain- and stress-based single element tests. A finite element simulation of nano- indentation in lamellar bone was finally performed in order to show the abilities of the newly developed constitutive model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let D be a link diagram with n crossings, sA and sB be its extreme states and |sAD| (respectively, |sBD|) be the number of simple closed curves that appear when smoothing D according to sA (respectively, sB). We give a general formula for the sum |sAD| + |sBD| for a k-almost alternating diagram D, for any k, characterizing this sum as the number of faces in an appropriate triangulation of an appropriate surface with boundary. When D is dealternator connected, the triangulation is especially simple, yielding |sAD| + |sBD| = n + 2 - 2k. This gives a simple geometric proof of the upper bound of the span of the Jones polynomial for dealternator connected diagrams, a result first obtained by Zhu [On Kauffman brackets, J. Knot Theory Ramifications6(1) (1997) 125–148.]. Another upper bound of the span of the Jones polynomial for dealternator connected and dealternator reduced diagrams, discovered historically first by Adams et al. [Almost alternating links, Topology Appl.46(2) (1992) 151–165.], is obtained as a corollary. As a new application, we prove that the Turaev genus is equal to the number k of dealternator crossings for any dealternator connected diagram

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents some ideas about a new neural network architecture that can be compared to a Taylor analysis when dealing with patterns. Such architecture is based on lineal activation functions with an axo-axonic architecture. A biological axo-axonic connection between two neurons is defined as the weight in a connection in given by the output of another third neuron. This idea can be implemented in the so called Enhanced Neural Networks in which two Multilayer Perceptrons are used; the first one will output the weights that the second MLP uses to computed the desired output. This kind of neural network has universal approximation properties even with lineal activation functions. There exists a clear difference between cooperative and competitive strategies. The former ones are based on the swarm colonies, in which all individuals share its knowledge about the goal in order to pass such information to other individuals to get optimum solution. The latter ones are based on genetic models, that is, individuals can die and new individuals are created combining information of alive one; or are based on molecular/celular behaviour passing information from one structure to another. A swarm-based model is applied to obtain the Neural Network, training the net with a Particle Swarm algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Social behavior is mainly based on swarm colonies, in which each individual shares its knowledge about the environment with other individuals to get optimal solutions. Such co-operative model differs from competitive models in the way that individuals die and are born by combining information of alive ones. This paper presents the particle swarm optimization with differential evolution algorithm in order to train a neural network instead the classic back propagation algorithm. The performance of a neural network for particular problems is critically dependant on the choice of the processing elements, the net architecture and the learning algorithm. This work is focused in the development of methods for the evolutionary design of artificial neural networks. This paper focuses in optimizing the topology and structure of connectivity for these networks