975 resultados para Pseudo phase plane
Resumo:
Purpose A phase II study was designed to assess the efficacy and safety of Caelyx (liposomal doxorubicin) in patients with advanced or metastatic gastric cancer. Methods A total of 25 patients with gastric adenocarcinoma were treated with Caelyx 45 mg/m2 every 28 days as first-line therapy for advanced disease. Patients were treated until tumour progression or unacceptable toxicity. Results One patient was withdrawn from the study after experiencing a severe infusion reaction. Of the 24 evaluable patients, 1 had a partial response, 7 had stable disease and the others progressed. Side effects, in particular palmar-plantar erythrodysaesthesia and haematological toxicity, were minor. Conclusions We conclude that while this dose and schedule of Caelyx in this patient group is acceptable, further studies with this regimen cannot be recommended due to the lack of antitumour activity seen.
Resumo:
This research was a step towards the comprehension of the nano-particles interaction with bubbles created during boiling. It was aimed at solving the controversies of whether the heat transfer is enhanced or deteriorated during the boiling of the nanofluid. Experiments were conducted in normal gravity and reduced gravity environments on-board the European Space Agency Parabolic Flight Program. The local modification of the thermo-physical properties of the fluid and moreover the modification experienced in the liquid microlayer under the growing vapour bubble were the dominant factors in explaining the mechanisms of the boiling behaviour of the nanofluid.
Resumo:
Vibrational spectroscopy enables subtle details of the molecular structure of minyulite KAl2(OH,F)(PO4)2⋅4(H2O). Single crystals of a pure phase from a Brazilian pegmatite were used. Minyulite belongs to the orthorhombic crystal system. This indicates that it has three axes of unequal length, yet all are perpendicular to each other. The infrared and Raman spectroscopy were applied to compare the structure of minyulite with wardite. The reason for the comparison is that both are Al containing phosphate minerals. The Raman spectrum of minyulite shows an intense band at 1012 cm−1 assigned to the ν1PO43- symmetric stretching vibrations. A series of low intensity Raman bands at 1047, 1077, 1091 and 1105 cm−1 are assigned to the ν3PO43- antisymmetric stretching modes. The Raman bands at 1136, 1155, 1176 and 1190 cm−1 are assigned to AlOH deformation modes. The infrared band at 1014 cm−1 is ascribed to the PO43- ν1 symmetric stretching vibrational mode. The infrared bands at 1049, 1071, 1091 and 1123 cm−1 are attributed to the PO43- ν3 antisymmetric stretching vibrations. The infrared bands at 1123, 1146 and 1157 cm−1 are attributed to AlOH deformation modes. Raman bands at 575, 592, 606 and 628 cm−1 are assigned to the ν4 out of plane bending modes of the PO43- unit. In the 2600–3800 cm−1 spectral range, Raman bands for minyulite are found at 3661, 3669 and 3692 cm−1 are assigned to AlOH/AlF stretching vibrations. Broad infrared bands are also found at 2904, 3105, 3307, 3453 and 3523 cm−1. Raman bands at 3225, 3324 cm−1 are assigned to water stretching vibrations. A comparison is made with the vibrational spectra of wardite. Raman spectroscopy complimented with infrared spectroscopy has enabled aspects of the structure of minyulite to be ascertained and compared with that of other phosphate minerals.
Resumo:
Monitoring stream networks through time provides important ecological information. The sampling design problem is to choose locations where measurements are taken so as to maximise information gathered about physicochemical and biological variables on the stream network. This paper uses a pseudo-Bayesian approach, averaging a utility function over a prior distribution, in finding a design which maximizes the average utility. We use models for correlations of observations on the stream network that are based on stream network distances and described by moving average error models. Utility functions used reflect the needs of the experimenter, such as prediction of location values or estimation of parameters. We propose an algorithmic approach to design with the mean utility of a design estimated using Monte Carlo techniques and an exchange algorithm to search for optimal sampling designs. In particular we focus on the problem of finding an optimal design from a set of fixed designs and finding an optimal subset of a given set of sampling locations. As there are many different variables to measure, such as chemical, physical and biological measurements at each location, designs are derived from models based on different types of response variables: continuous, counts and proportions. We apply the methodology to a synthetic example and the Lake Eacham stream network on the Atherton Tablelands in Queensland, Australia. We show that the optimal designs depend very much on the choice of utility function, varying from space filling to clustered designs and mixtures of these, but given the utility function, designs are relatively robust to the type of response variable.
Resumo:
Vibrational spectroscopy enables subtle details of the molecular structure of whiteite to be determined. Single crystals of a pure phase from a Brazilian pegmatite were used. The infrared and Raman spectroscopy were applied to compare the molecular structure of whiteite with that of other phosphate minerals. The Raman spectrum of whiteite shows an intense band at 972 cm-1 assigned to the m1 PO3- 4 symmetric stretching vibrations. The low intensity Raman bands at 1076 and 1173 cm-1 are assigned to the m3 PO3- 4 antisymmetric stretching modes. The Raman bands at 1266, 1334 and 1368 cm-1 are assigned to AlOH deformation modes. The infrared band at 967 cm-1 is ascribed to the PO3- 4 m1 symmetric stretching vibrational mode. The infrared bands at 1024, 1072, 1089 and 1126 cm-1 are attributed to the PO3-4 m3 antisymmetric stretching vibrations. Raman bands at 553, 571 and 586 cm-1 are assigned to the m4 out of plane bending modes of the PO3- 4 unit. Raman bands at 432, 457, 479 and 500 cm-1 are attributed to the m2 PO4 and H2PO4 bending modes. In the 2600 to 3800 cm-1 spectral range, Raman bands for whiteite are found 3426, 3496 and 3552 cm-1 are assigned to AlOH stretching vibrations. Broad infrared bands are also found at 3186 cm-1. Raman bands at 2939 and 3220 cm-1 are assigned to water stretching vibrations. Raman spectroscopy complimented with infrared spectroscopy has enabled aspects of the structure of whiteite to be ascertained and compared with that of other phosphate minerals.
Resumo:
Social networking sites (SNSs), with their large numbers of users and large information base, seem to be perfect breeding grounds for exploiting the vulnerabilities of people, the weakest link in security. Deceiving, persuading, or influencing people to provide information or to perform an action that will benefit the attacker is known as “social engineering.” While technology-based security has been addressed by research and may be well understood, social engineering is more challenging to understand and manage, especially in new environments such as SNSs, owing to some factors of SNSs that reduce the ability of users to detect the attack and increase the ability of attackers to launch it. This work will contribute to the knowledge of social engineering by presenting the first two conceptual models of social engineering attacks in SNSs. Phase-based and source-based models are presented, along with an intensive and comprehensive overview of different aspects of social engineering threats in SNSs.
Resumo:
Aim: To examine if fasting affects serum bilirubin levels in clinical healthy males and females. Methods: We utilised retrospective data from phase 1 clinical trials where blood was collected in either a fed or fasting state at screening and pre-dosing time points and analysed for total bilirubin levels as per standard clinical procedures. Participants were clinically healthy males (n = 105) or females (n = 30) aged 18 to 48 inclusive who participated in a phase 1 clinical trial in 2012 or 2013. Results: We found a statistically significant increase in total serum bilirubin levels in fasting males as compared to non-fasting males. The fasting time correlated positively with increased bilirubin levels. The age of the healthy males did not correlate with their fasting bilirubin level. We found no correlation between fasting and bilirubin levels in clinically normal females. Conclusions: The recruitment and screening of volunteers for a clinical trial is a time-consuming and expensive process. This study clearly demonstrates that testing for serum bilirubin should be conducted on non-fasting male subjects. If fasting is required, then participants should not be excluded from a trial based on an elevated serum bilirubin that is deemed non-clinically significant.
Resumo:
Purpose The LUX-Lung 3 study investigated the efficacy of chemotherapy compared with afatinib, a selective, orally bioavailable ErbB family blocker that irreversibly blocks signaling from epidermal growth factor receptor (EGFR/ErbB1), human epidermal growth factor receptor 2 (HER2/ErbB2), and ErbB4 and has wide-spectrum preclinical activity against EGFR mutations. A phase II study of afatinib in EGFR mutation-positive lung adenocarcinoma demonstrated high response rates and progression-free survival (PFS). Patients and Methods In this phase III study, eligible patients with stage IIIB/IV lung adenocarcinoma were screened for EGFR mutations. Mutation-positive patients were stratified by mutation type (exon 19 deletion, L858R, or other) and race (Asian or non-Asian) before two-to-one random assignment to 40 mg afatinib per day or up to six cycles of cisplatin plus pemetrexed chemotherapy at standard doses every 21 days. The primary end point was PFS by independent review. Secondary end points included tumor response, overall survival, adverse events, and patient-reported outcomes (PROs). Results A total of 1,269 patients were screened, and 345 were randomly assigned to treatment. Median PFS was 11.1 months for afatinib and 6.9 months for chemotherapy (hazard ratio [HR], 0.58; 95% CI, 0.43 to 0.78; P = .001). Median PFS among those with exon 19 deletions and L858R EGFR mutations (n = 308) was 13.6 months for afatinib and 6.9 months for chemotherapy (HR, 0.47; 95% CI, 0.34 to 0.65; P = .001). The most common treatmentrelated adverse events were diarrhea, rash/acne, and stomatitis for afatinib and nausea, fatigue, and decreased appetite for chemotherapy. PROs favored afatinib, with better control of cough, dyspnea, and pain. Conclusion Afatinib is associated with prolongation of PFS when compared with standard doublet chemotherapy in patients with advanced lung adenocarcinoma and EGFR mutations.
Resumo:
Purpose Patient-reported symptoms and health-related quality of life (QoL) benefits were investigated in a randomized, phase III trial of afatinib or cisplatin/pemetrexed. Patients and Methods Three hundred forty-five patients with advanced epidermal growth factor receptor (EGFR) mutation-positive lung adenocarcinoma were randomly assigned 2:1 to afatinib 40 mg per day or up to six cycles of cisplatin/pemetrexed. Lung cancer symptoms and health-related QoL were assessed every 21 days until progression using the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire C30 and Lung Cancer-13 questionnaires. Analyses of cough, dyspnea, and pain were preplanned, including percentage of patients who improved on therapy, time to deterioration of symptoms, and change in symptoms over time. Results Questionnaire compliance was high. Compared with chemotherapy, afatinib significantly delayed the time to deterioration for cough (hazard ratio [HR], 0.60; 95% CI, 0.41 to 0.87; P = .007) and dyspnea (HR, 0.68; 95% CI, 0.50 to 0.93; P = .015), but not pain (HR, 0.83; 95% CI, 0.62 to 1.10; P = .19). More patients on afatinib (64%) versus chemotherapy (50%) experienced improvements in dyspnea scores (P lt; .010). Differences in mean scores over time significantly favored afatinib over chemotherapy for cough (P lt; .001) and dyspnea (P = .001). Afatinib showed significantly better mean scores over time in global health status/QoL (P = .015) and physical (P = .001), role (P = .004), and cognitive (P lt; .007) functioning compared with chemotherapy. Fatigue and nausea were worse with chemotherapy, whereas diarrhea, dysphagia, and sore mouth were worse with afatinib (all P = .01). Conclusion In patients with lung adenocarcinoma with EGFR mutations, first-line afatinib was associated with better control of cough and dyspnea compared with chemotherapy, although diarrhea, dysphagia, and sore mouth were worse. Global health status/QoL was also improved over time with afatinib compared with chemotherapy.
Resumo:
Since the 1970s, the Uppsala stages model has been one of the dominant explanations of firm internationalization. The model's focus on internationalization as a firm's gradual and incremental process of increasing international involvement has attracted much debate, with one criticism being that it is unclear in explaining how the internationalization process first originates within a firm. In this paper, the Uppsala model is extended through the incorporation of a pre-internationalization phase to explore the antecedents of firm internationalization. Adopting the Uppsala model's theoretical underpinnings, this paper develops and operationalizes a pre-internationalization phase decision heuristic in the form of an ‘export readiness index'. Four constructs are proposed that drive and inhibit export commencement decision-making during a firm's preinternationalization phase: export stimuli, attitudinal/psychological commitment, resources and lateral rigidity. Through a survey of Australian exporting and non-exporting small-medium sized enterprises (SMEs), the Export Readiness Index (ERI) is developed through factor analysis and tested using logistic regression. Results of the study and their potential implications are discussed.
Resumo:
In order to dynamically reduce voltage unbalance along a low voltage distribution feeder, a smart residential load transfer system is discussed. In this scheme, residential loads can be transferred from one phase to another to minimize the voltage unbalance along the feeder. Each house is supplied through a static transfer switch and a controller. The master controller, installed at the transformer, observes the power consumption in each house and will determine which house(s) should be transferred from an initially connected phase to another in order to keep the voltage unbalance minimum. The performance of the smart load transfer scheme is demonstrated by simulations.
Resumo:
This paper presents a new algorithm based on a Modified Particle Swarm Optimization (MPSO) to estimate the harmonic state variables in a distribution networks. The proposed algorithm performs the estimation for both amplitude and phase of each injection harmonic currents by minimizing the error between the measured values from Phasor Measurement Units (PMUs) and the values computed from the estimated parameters during the estimation process. The proposed algorithm can take into account the uncertainty of the harmonic pseudo measurement and the tolerance in the line impedances of the network as well as the uncertainty of the Distributed Generators (DGs) such as Wind Turbines (WTs). The main features of the proposed MPSO algorithm are usage of a primary and secondary PSO loop and applying the mutation function. The simulation results on 34-bus IEEE radial and a 70-bus realistic radial test networks are presented. The results demonstrate that the speed and the accuracy of the proposed Distribution Harmonic State Estimation (DHSE) algorithm are very excellent compared to the algorithms such as Weight Least Square (WLS), Genetic Algorithm (GA), original PSO, and Honey Bees Mating Optimization (HBMO).
Resumo:
The ultraviolet photodissociation of gas-phase N-methylpyridinium ions is studied at room temperature using laser photodissociation mass spectrometry and structurally diagnostic ion-molecule reaction kinetics. The C5H5N-CH3+ (m/z 94), C5H5N-CD3+ (m/z 97), and C5D5N-CH3+(m/z 99) isotopologues are investigated, and it is shown that the N-methylpyridinium ion photodissociates by the loss of methane in the 36 000 - 43 000 cm(-1) (280 - 230 nm) region. The dissociation likely occurs on the ground state surface following internal conversion from the SI state. For each isotopologue, by monitoring the photofragmentation yield as a function of photon wavenumber, a broad vibronically featured band is recorded with origin (0-0) transitions assigned at 38 130, 38 140 and 38 320 cm(-1) for C5H5N-CH3+ C5H5N-CD3+ and C5D5N-CH3+, respectively. With the aid of quantum chemical calculations (CASSCF(6,6)/aug-cc-pVDZ), most of the observed vibronic detail is assigned to two in-plane ring deformation modes. Finally, using ion-molecule reactions, the methane coproduct at m/z 78 is confirmed as a 2-pyridinylium ion.
Resumo:
Structural investigations of large biomolecules in the gas phase are challenging. Herein, it is reported that action spectroscopy taking advantage of facile carbon-iodine bond dissociation can be used to examine the structures of large molecules, including whole proteins. Iodotyrosine serves as the active chromophore, which yields distinctive spectra depending on the solvation of the side chain by the remainder of the molecule. Isolation of the chromophore yields a double featured peak at ∼290 nm, which becomes a single peak with increasing solvation. Deprotonation of the side chain also leads to reduced apparent intensity and broadening of the action spectrum. The method can be successfully applied to both negatively and positively charged ions in various charge states, although electron detachment becomes a competitive channel for multiply charged anions. In all other cases, loss of iodine is by far the dominant channel which leads to high sensitivity and simple data analysis. The action spectra for iodotyrosine, the iodinated peptides KGYDAKA, DAYLDAG, and the small protein ubiquitin are reported in various charge states. © 2012 American Chemical Society.
Resumo:
Gas phase peroxyl radicals are central to our chemical understanding of combustion and atmospheric processes and are typically characterized by strong absorption in the UV (lambda(max) approximate to 240 nm). The analogous maximum absorption feature for arylperoxyl radicals is predicted to shift to the visible but has not previously been characterized nor have any photoproducts arising from this transition been identified. Here we describe the controlled synthesis and isolation in vacuo of an array of charge-substituted phenylperoxyl radicals at room temperature, including the 4-(N,N,N-trimethylammonium)methyl phenylperoxyl radical cation (4-Me3N[+]CH2-C6H4OO center dot), using linear ion-trap mass spectrometry. Photodissociation mass spectra obtained at wavelengths ranging from 310 to 500 nm reveal two major photoproduct channels corresponding to homolysis of aryl-OO and arylO-O bonds resulting in loss of O-2 and O, respectively. Combining the photodissociation yields across this spectral window produces a broad (FWHM approximate to 60 nm) but clearly resolved feature centered at lambda(max) = 403 nm (3.08 eV). The influence of the charge-tag identity and its proximity to the radical site are investigated and demonstrate no effect on the identity of the two dominant photoproduct channels. Electronic structure calculations have located the vertical (B) over tilde <- (X) over tilde transition of these substituted phenylperoxyl radicals within the experimental uncertainty and further predict the analogous transition for unsubstituted phenylperoxyl radical (C6H5OO center dot) to be 457 nm (2.71 eV), nearly 45 nm shorter than previous estimates and in good agreement with recent computational values.