959 resultados para Prosthetic Motor Imaginary Task
Resumo:
Dysfunction in the motor system is a feature of persistent whiplash associated disorders. Little is known about motor dysfunction in the early stages following injury and of its progress in those persons who recover and those who develop persistent symptoms. This study measured prospectively, motor system function (cervical range of movement (ROM), joint position error (JPE) and activity of the superficial neck flexors (EMG) during a test of cranio-cervical flexion) as well as a measure of fear of re-injury (TAMPA) in 66 whiplash subjects within 1 month of injury and then 2 and 3 months post injury. Subjects were classified at 3 months post injury using scores on the neck disability index: recovered (30). Motor system function was also measured in 20 control subjects. All whiplash groups demonstrated decreased ROM and increased EMG (compared to controls) at 1 month post injury. This deficit persisted in the group with moderate/severe symptoms but returned to within normal limits in those who had recovered or reported persistent mild pain at 3 months. Increased EMG persisted for 3 months in all whiplash groups. Only the moderate/severe group showed greater JPE, within 1 month of injury, which remained unchanged at 3 months. TAMPA scores of the moderate/severe group were higher than those of the other two groups. The differences in TAMPA did not impact on ROM, EMG or JPE. This study identifies, for the first time, deficits in the motor system, as early as 1 month post whiplash injury, that persisted not only in those reporting moderate/severe symptoms at 3 months but also in subjects who recovered and those with persistent mild symptoms. (C) 2002 International Association for the Study of Pain. Published by Elsevier Science B.V. All rights reserved.
Resumo:
This paper reports on the motor and functional outcomes of 20 children with developmental coordination disorder (DCD) aged 4-8 years consecutively referred to a pediatric physiotherapy service. Children with a Movement ABC (M-ABC) score less than the 15th percentile, and with no concurrent medical, sensory, physical, intellectual or neurological impairments, were recruited. The Motor Assessment Outcomes Model (MAOM) [Coster and Haley, Infants and Young Children 4 (1992) 11] provided the theoretical base for measurement selection, and preliminary findings at the activities and participation levels of the model are reported in this article. Children with DCD performed at the lower end of the normal range on the Pea-body Developmental Motor Scales (fine motor total score) (M = 85.65, SD = 12.23). Performance on the Visual Motor Integration Test (VMI) standard scores was within the average range (M = 96.15, SD = 10.69). Videotaped observations of the children's writing and cutting indicated that 29% were left-handed and that a large proportion of all children (31%) utilized unusual pencil grasp patterns and immature prehension of scissors. Measurement at the participation level involved use of the Pictorial Scale of Perceived Competence and Social Acceptance (PCSA) and Pediatric Evaluation of Disability Inventory (PEDI). Overall, these young children rated themselves towards the more competent and accepted end of the PCSA over the dimensions of physical and cognitive competence and peer and maternal acceptance. The PEDI revealed generally average performance on social (M = 49.98, SD = 16.62) and mobility function (M = 54.71, SD = 3.99), however, self-care function was below the average range for age (M = 38.01, SD = 12.19). The utility of the MAOM as a framework for comprehensive measurement of functional and motor outcomes of DCD in young children is discussed. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Krabbe's disease (galactocerebrosidase deficiency) rarely presents in adults, usually with predominantly upper motor neurone clinical features. We report a case in whom the clinical features were similar to motor neurone disease. Nerve conduction studies and neuroimaging were important in leading to the correct diagnosis. Differences in adult-onset presentations are described. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The effect of number of samples and selection of data for analysis on the calculation of surface motor unit potential (SMUP) size in the statistical method of motor unit number estimates (MUNE) was determined in 10 normal subjects and 10 with amyotrophic lateral sclerosis (ALS). We recorded 500 sequential compound muscle action potentials (CMAPs) at three different stable stimulus intensities (10–50% of maximal CMAP). Estimated mean SMUP sizes were calculated using Poisson statistical assumptions from the variance of 500 sequential CMAP obtained at each stimulus intensity. The results with the 500 data points were compared with smaller subsets from the same data set. The results using a range of 50–80% of the 500 data points were compared with the full 500. The effect of restricting analysis to data between 5–20% of the CMAP and to standard deviation limits was also assessed. No differences in mean SMUP size were found with stimulus intensity or use of different ranges of data. Consistency was improved with a greater sample number. Data within 5% of CMAP size gave both increased consistency and reduced mean SMUP size in many subjects, but excluded valid responses present at that stimulus intensity. These changes were more prominent in ALS patients in whom the presence of isolated SMUP responses was a striking difference from normal subjects. Noise, spurious data, and large SMUP limited the Poisson assumptions. When these factors are considered, consistent statistical MUNE can be calculated from a continuous sequence of data points. A 2 to 2.5 SD or 10% window are reasonable methods of limiting data for analysis. Muscle Nerve 27: 320–331, 2003
Resumo:
We investigated how the relative direction of limb movements in external space (iso- and non-isodirectionality), muscular constraints (the relative timing of homologous muscle activation) and the egocentric frame of reference (moving simultaneously toward/away the longitudinal axis of the body) contribute to the stability of coordinated movements. In the first experiment, we attempted to determine the respective stability of isodirectional and non-isodirectional movements in between-persons coordination. In a second experiment, we determined the effect of the relative direction in external space, and of muscular constraints, on pattern stability during a within-person bimanual coordination task. In the third experiment we dissociated the effects on pattern stability of the muscular constraints, relative direction and egocentric frame of reference. The results showed that (1) simultaneous activation of homologous muscles resulted in more stable performance than simultaneous activation of non-homologous muscles during within-subject coordination, and that (2) isodirectional movements were more stable than non-isodirectional movements during between-persons coordination, confirming the role of the relative direction of the moving limbs in the stability of bimanual coordination. Moreover, the egocentric constraint was to some extent found distinguishable from the effect of the relative direction of the moving limbs in external space, and from the effect of the relative timing of muscle activation. In summary, the present study showed that relative direction of the moving limbs in external space and muscular constraints may interact either to stabilize or destabilize coordination patterns. (C) 2003 Published by Elsevier B.V.
Resumo:
The authors investigated how the intention to passively perform a behavior and the intention to persist with a behavior impact upon the spatial and temporal properties of bimanual coordination. Participants (N = 30) were asked to perform a bimanual coordination task that demanded the continuous rhythmic extension-flexion of the wrists. The frequency of movement was scaled by an auditory metronome beat from 1.5 Hz, increasing to 3.25 Hz in .25-Hz increments. The task was further defined by the requirement that the movements be performed initially in a prescribed pattern of coordination (in-phase or antiphase) while the participants assumed one of two different intentional states: stay with the prescribed pattern should it become unstable or do not intervene should the pattern begin to change. Transitions away from the initially prescribed pattern were observed only in trials conducted in the antiphase mode of coordination. The time at which the antiphase pattern of coordination became unstable was not found to be influenced by the intentional state. In addition, the do-not-intervene set led to a switch to an in-phase pattern of coordination whereas the stay set led to phase wandering. Those findings are discussed within the framework of a dynamic account of bimanual coordination.
Resumo:
Recent studies have revealed regional variation in the density and distribution of inhibitory neurons in different cortical areas, which are thought to reflect area-specific specializations in cortical circuitry. However, there are as yet few standardized quantitative data regarding how the inhibitory circuitry in prefrontal cortex (PFC), which is thought to be involved in executive functions such as cognition, emotion and decision making, compares to that in other cortical areas. Here we used immunohistochemical techniques to determine the density and distribution of parvalbumin (PV)-, calbindin (CB)-, and calretinin (CR)-immunoreactive (ir) neurons and axon terminals in the dorsolateral and orbital PFC of the owl monkey (Aotus trivirgatus), and compared them directly with data obtained using the same techniques in 11 different visual, somatosensory and motor areas. We found marked differences in the density of PV-ir, CB-ir, and CR-ir interneurons in several cortical areas. One hundred and twenty eight of all 234 possible between-area pairwise comparisons were significantly different. The density of specific subpopulations of these cells also varied among cortical areas, as did the density of axon terminals. Comparison of PFC with other cortical areas revealed that 40 of all 66 possible statistical comparisons of the density of PV-ir, CB-ir, and CR-ir cells were significantly different. We also found evidence for heterogeneity in the pattern of labeling of PV-ir, CB-ir, and CR-ir cells and axon terminals between the dorsolateral and orbital subdivisions of PFC. These data are likely to reflect basic differences in interneuron circuitry, which are likely to influence inhibitory function in the cortex. Copyright (C) 2003 S. Karger AG, Basel.
Resumo:
O Hospital Universit??rio da Universidade Federal de Santa Maria oferece, entre v??rios outros, o Servi??o de Hemato-Oncologia. Inicialmente, o servi??o tinha como meta priorit??ria apenas a perfei????o cl??nica. Hoje, entende que o tratamento terap??utico deve-se acompanhar de uma proposta de bem-estar social e psicol??gico. Para isto, criou-se, na Sala de Atendimento Pedag??gico, um espa??o de forma????o cultural b??sico, onde se desenvolvem oficinas para pacientes agrupados em turmas, conforme os est??gios de desenvolvimento do pensamento segundo Piaget. Observam-se mudan??as comportamentais dos pacientes que v??o desde a aceita????o das consultas m??dicas at?? manifesta????es de prazer com a vida, criatividade e socializa????o, atitudes de organiza????o, disciplina e participa????o, desenvolvimento intelectual e motor e interesse pela vida escolar
Resumo:
Este trabalho propõe uma metodologia de aprendizagem que permite a um robô aprender uma tarefa adaptando-a e representando-a de acordo com a sua capacidade motora e sensorial. Primeiramente, um mapeamento sensoriomotor é criado e converte informação sensorial em informação motora. Depois, através de imitação, o robô aprende um conjunto de ações elementares formando um vocabulário motor. A imitação é baseada nas representações motoras obtidas com o mapeamento sensoriomotor. O vocabulário motor criado é então utilizado para aprender e realizar tarefas mais sofisticadas, compostas por seqüências ou combinações de ações elementares. Esta metodologia é ilustrada através de uma aplicação de mapeamento e navegação topológica com um robô móvel. O automovimento é utilizado como mapeamento visuomotor, convertendo o fluxo óptico em imagens omnidirecionais em informação motora (translação e rotação), a qual é usada para a criação de um vocabulário motor. A seguir, o vocabulário é utilizado para mapeamento e navegação topológica. Os resultados obtidos são interessantes e a abordagem proposta pode ser estendida a diferentes robôs e aplicações.
Resumo:
This article explores the role of the European Union in the human rights protection, implementation and promotion in Serbia. It is clear that the EU demands on democratisation in the region of Western Balkans are crucial to achieve the respect for human rights. The human rights standards as part of the conditionality criteria of the EU is a clear message towards the countries aspiring membership. However, Serbia progress in the field has been difficult due to several internal constraints. This paper aims to uncover the democratisation process of Serbia on its path towards the EU, and its progress (or not) regarding human rights protection and implementation.