982 resultados para Progesterone Reductase -- antagonists
Resumo:
Preclinical studies have indicated that somatostatin receptor (sst)-expressing tumors demonstrate higher uptake of radiolabeled sst antagonists than of sst agonists. In this study, we evaluated whether imaging with sst antagonists was feasible in patients.
Resumo:
Somatostatin-based radiolabeled peptides have been successfully introduced into the clinic for targeted imaging and radionuclide therapy of somatostatin receptor (sst)-positive tumors, especially of subtype 2 (sst2). The clinically used peptides are exclusively agonists. Recently, we showed that radiolabeled antagonists may be preferable to agonists because they showed better pharmacokinetics, including higher tumor uptake. Factors determining the performance of radioantagonists have only scarcely been studied. Here, we report on the development and evaluation of four (64)Cu or (68)Ga radioantagonists for PET of sst2-positive tumors.
Resumo:
Chelated somatostatin agonists have been shown to be sensitive to N-terminal radiometal modifications, with Ga-DOTA agonists having significantly higher binding affinity than their Lu-, In-, and Y-DOTA correlates. Recently, somatostatin antagonists have been successfully developed as alternative tracers to agonists. The aim of this study was to evaluate whether chelated somatostatin antagonists are also sensitive to radiometal modifications and how. We have synthesized 3 different somatostatin antagonists, DOTA-p-NO(2)-Phe-c[D-Cys-Tyr-D-Aph(Cbm)-Lys-Thr-Cys]-D-Tyr-NH(2), DOTA-Cpa-c[D-Cys-Aph(Hor)-D-Aph(Cbm)-Lys-Thr-Cys]-D-Tyr-NH(2) (DOTA-JR11), and DOTA-p-Cl-Phe-c[D-Cys-Tyr-D-Aph(Cbm)-Lys-Thr-Cys]-D-Tyr-NH(2), and added various radiometals including In(III), Y(III), Lu(III), Cu(II), and Ga(III). We also replaced DOTA with 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA) and added Ga(III). The binding affinity of somatostatin receptors 1 through 5 was evaluated in all cases. In all 3 resulting antagonists, the Ga-DOTA analogs were the lowest-affinity radioligands, with a somatostatin receptor 2 binding affinity up to 60 times lower than the respective Y-DOTA, Lu-DOTA, or In-DOTA compounds. Interestingly, however, substitution of DOTA by the NODAGA chelator was able to increase massively its binding affinity in contrast to the Ga-DOTA analog. The 3 NODAGA analogs are antagonists in functional tests. In vivo biodistribution studies comparing (68)Ga-DOTATATE agonist with (68)Ga-DOTA-JR11 and (68)Ga-NODAGA-JR11 showed not only that the JR11 antagonist radioligands were superior to the agonist ligands but also that (68)Ga-NODAGA-JR11 was the tracer of choice and preferable to (68)Ga-DOTA-JR11 in transplantable HEK293-hsst(2) tumors in mice. One may therefore generalize that somatostatin receptor 2 antagonists are sensitive to radiometal modifications and may preferably be coupled with a (68)Ga-NODAGA chelator-radiometal complex.
Resumo:
Bone morphogenetic proteins (BMP) have been used successfully by orthopedic clinicians to augment bone healing. However, these osteoinductive proteins must be applied at high concentrations to induce bone formation. The limited therapeutic efficacy may be due to the local expression of BMP antagonists such as Noggin that neutralize exogenous and endogenous BMPs. If so, inhibiting BMP antagonists may provide an attractive option to augment BMP induced bone formation. The engineered BMP-2 variant L51P is deficient in BMP receptor type I binding, but maintains its affinity for BMP receptor type II and BMP antagonists including Noggin, Chordin and Gremlin. This modification makes L51P a BMP receptor-inactive inhibitor of BMP antagonists. We implanted β-tricalcium phosphate ceramics loaded with BMP-2 and/or L51P into a critical size defect model in the rat femur to investigate whether the inhibition of BMP antagonist with L51P enhances the therapeutic efficacy of exogenous BMP-2. Our study reveals that L51P reduces the demand of exogenous BMP-2 to induce bone healing markedly, without promoting bone formation directly when applied alone.
Resumo:
Delayed fracture healing and non-unions represent rare but severe complications in orthopedic surgery. Further knowledge on the mechanisms of the bone repair process and of the development of a pseudoarthrosis is essential to predict and prevent impaired healing of fractures. The present study aimed at elucidating differences in gene expression during the repair of rigidly and non-rigidly fixed osteotomies. For this purpose, the MouseFixâ„¢ and the FlexiPlateâ„¢ systems (AO Development Institute, Davos, CH), allowing the creation of well defined osteotomies in mouse femora, were employed. A time course following the healing process of the osteotomy was performed and bones and periimplant tissues were analyzed by high-resolution X-ray, MicroCT and by histology. For the assessment of gene expression, Low Density Arrays (LDA) were done. In animals with rigid fixation, X-ray and MicroCT revealed healing of the osteotomy within 3 weeks. Using the FlexiPlateâ„¢ system, the osteotomy was still visible by X-ray after 3 weeks and a stabilizing cartilaginous callus was formed. After 4.5 weeks, the callus was remodeled and the osteotomy was, on a histological level, healed. Gene expression studies revealed levels of transcripts encoding proteins associated with inflammatory processes not to be altered in tissues from bones with rigid and non-rigid fixation, respectively. Levels of transcripts encoding proteins of the extracellular matrix and essential for bone cell functions were not increased in the rigidly fixed group when compared to controls without osteotomy. In the FlexiPlateâ„¢ group, levels of transcripts encoding the same set of genes were significantly increased 3 weeks after surgery. Expression of transcripts encoding BMPs and BMP antagonists was increased after 3 weeks in repair tissues from bones fixed with FlexiPlateâ„¢, as were inhibitors of the WNT signaling pathways. Little changes only were detected in transcript levels of tissues from rigidly fixed bones. The data of the present study suggest that rigid fixation enables accelerated healing of an experimental osteotomy as compared to non-rigid fixation. The changes in the healing process after non-rigid fixation are accompanied by an increase in the levels of transcripts encoding inhibitors of osteogenic pathways and, probably as a consequence, by temporal changes in bone matrix synthesis.
Resumo:
Rimonabant (SR141716) and the structurally related AM251 are widely used in pharmacological experiments as selective cannabinoid receptor CB(1) antagonists / inverse agonists. Concentrations of 0.5-10 µM are usually applied in in vitro experiments. We intended to show that these drugs did not act at GABA(A) receptors but found a significant positive allosteric modulation instead.
Resumo:
Observational studies have suggested that patients with rheumatoid arthritis (RA) who experience inadequate response to anti-tumour necrosis factor (anti-TNF) agents respond more favourably to rituximab (RTX) than to an alternative anti-TNF agent. However, the relative effectiveness of these agents on long-term outcomes, particularly in radiographic damage, remains unclear.
Resumo:
The objective was to analyze the outcome following prenatal exposure to angiotensin-converting enzyme inhibitors (ACE-Is) or angiotensin receptor antagonists (ARBs). For this purpose, a systematic review of published case reports and case series dealing with intrauterine exposure to ACE-Is or to ARBs using Medline as the source of data was performed. The publications retained for analysis included patients who were described individually, revealing, at minimum, the gestational age, substance used, period of medication intake, and the outcome. In total, 72 reports were included; 37 articles (118 well-documented cases) described the prenatal exposure to ACE-Is; and 35 articles (68 cases) described the prenatal exposure to ARBs. Overall, 52% of the newborns exposed to ACE-Is and 13% of the newborns exposed to ARBs did not exhibit any complications (P<0.0001). Neonatal complications were more frequent following exposure to ARBs and included renal failure, oligohydramnios, death, arterial hypotension, intrauterine growth retardation, respiratory distress syndrome, pulmonary hypoplasia, hypocalvaria, limb defects, persistent patent ductus arteriosus, or cerebral complications. The long-term outcome is described as positive in only 50% of the exposed children. Fetopathy caused by exposure to ACE-Is or ARBs has relevant neonatal and long-term complications. The outcome is poorer following exposure to ARBs. We propose the term "fetal renin-angiotensin system blockade syndrome" to describe the related clinical findings. Thirty years after the first description of ACE-I fetopathy, relevant complications are, at present, regularly described, indicating that the awareness of the deleterious effect of prenatal exposure to drugs inhibiting the renin-angiotensin system should be improved.
Resumo:
The uptake of radiolabeled somatostatin analogs by tumor cells through receptor-mediated internalization is a critical process for the in vivo targeting of tumoral somatostatin receptors. In the present study, the somatostatin receptor internalization induced by a variety of somatostatin analogs was measured with new immunocytochemical methods that allow characterization of trafficking of the somatostatin receptor subtype 2 (sst2), somatostatin receptor subtype 3 (sst3), and somatostatin receptor subtype 5 (sst5) in vitro at the protein level. METHODS: Human embryonic kidney 293 (HEK293) cells expressing the sst2, sst3, or the sst5 were used in a morphologic immunocytochemical internalization assay using specific sst2, sst3 and sst5 antibodies to qualitatively and quantitatively determine the capability of somatostatin agonists or antagonists to induce somatostatin receptor internalization. In addition, the internalization properties of a selection of these agonists have been compared and quantified in sst2-expressing CHO-K1 cells using an ELISA. RESULTS: Agonists with a high sst2-binding affinity were able to induce sst2 internalization in the HEK293 and CHO-K1 cell lines. New sst2 agonists, such as Y-DOTA-TATE, Y-DOTA-NOC, Lu-DOTA-BOC-ATE (where DOTA is 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid; TATE is [Tyr3, Thr8]-octreotide; NOC is [1-NaI3]-octreotide; and BOC-ATE is [BzThi3, Thr8]-octreotide), iodinated sugar-containing octreotide analogs, or BIM-23244 were considerably more potent in internalizing sst2 than was DTPA-octreotide (where DTPA is diethylenetriaminepentaacetic acid). Similarly, compounds with high sst3 affinity such as KE108 were able to induce sst3 internalization. In sst2- or sst3-expressing cell lines, agonist-induced receptor internalization was efficiently abolished by sst2- or sst3-selective antagonists, respectively. Antagonists alone had no effect on sst2 or sst3 internalization. We also showed that somatostatin-28 and somatostatin-14 can induce sst5 internalization. Unexpectedly, however, potent sst5 agonists such as KE108, BIM-23244, and L-817,818 were not able to induce sst5 internalization under the same conditions. CONCLUSION: Using sensitive and reproducible immunocytochemical methods, the ability of various somatostatin analogs to induce sst2, sst3, and sst5 internalization has been qualitatively and quantitatively determined. Whereas all agonists triggered sst2 and sst3 internalization, sst5 internalization was induced by natural somatostatin peptides but not by synthetic high-affinity sst5 agonists. Such assays will be of considerable help for the future characterization of ligands foreseen for nuclear medicine applications.
Resumo:
Targeting neuroendocrine tumors expressing somatostatin receptor subtypes (sst) with radiolabeled somatostatin agonists is an established diagnostic and therapeutic approach in oncology. While agonists readily internalize into tumor cells, permitting accumulation of radioactivity, radiolabeled antagonists do not, and they have not been considered for tumor targeting. The macrocyclic chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was coupled to two potent somatostatin receptor-selective peptide antagonists [NH(2)-CO-c(DCys-Phe-Tyr-DAgl(8)(Me,2-naphthoyl)-Lys-Thr-Phe-Cys)-OH (sst(3)-ODN-8) and a sst(2)-selective antagonist (sst(2)-ANT)], for labeling with (111/nat)In. (111/nat)In-DOTA-sst(3)-ODN-8 and (111/nat)In-DOTA-[4-NO(2)-Phe-c(DCys-Tyr-DTrp-Lys-Thr-Cys)-DTyr-NH(2)] ((111/nat)In-DOTA-sst(2)-ANT) showed high sst(3)- and sst(2)-binding affinity, respectively. They did not trigger sst(3) or sst(2) internalization but prevented agonist-stimulated internalization. (111)In-DOTA-sst(3)-ODN-8 and (111)In-DOTA-sst(2)-ANT were injected intravenously into mice bearing sst(3)- and sst(2)-expressing tumors, and their biodistribution was monitored. In the sst(3)-expressing tumors, strong accumulation of (111)In-DOTA-sst(3)-ODN-8 was observed, peaking at 1 h with 60% injected radioactivity per gram of tissue and remaining at a high level for >72 h. Excess of sst(3)-ODN-8 blocked uptake. As a control, the potent agonist (111)In-DOTA-[1-Nal(3)]-octreotide, with strong sst(3)-binding and internalization properties showed a much lower and shorter-lasting uptake in sst(3)-expressing tumors. Similarly, (111)In-DOTA-sst(2)-ANT was injected into mice bearing sst(2)-expressing tumors. Tumor uptake was considerably higher than with the highly potent sst(2)-selective agonist (111)In-diethylenetriaminepentaacetic acid-[Tyr(3),Thr(8)]-octreotide ((111)In-DTPA-TATE). Scatchard plots showed that antagonists labeled many more sites than agonists. Somatostatin antagonist radiotracers therefore are preferable over agonists for the in vivo targeting of sst(3)- or sst(2)-expressing tumors. Antagonist radioligands for other peptide receptors need to be evaluated in nuclear oncology as a result of this paradigm shift.