950 resultados para Process parameters
Resumo:
Condoms are widely accepted as a contraceptive for family planning and population control. It is also accepted as the most effective barrier against sexually transmitted diseases, especially AIDS, the incurable disease. But presence of pinholes and low film strength of condoms make it unsuitable for the purpose. Quality improvement of condoms by reducing the pinhole formation and increasing the film strength is thus an essential requirement for population control as well as for preventing the spread of sexually transmitted diseases. Strict implementation of WHO specification of condoms further increases the rejection percentage. This causes higher rejection loss to condom manufacturers because the defects could be identified only at the final stage of processing. If the influence of various factors which cause these defects is known, manufacturers can take remedial measures to reduce the defectives so that rejection loss can be decreased and quality of condoms increased. In the present study, it was proposed to conduct experiments to improve the quality of condoms by reducing the pinhole rejection percentage and increasing the tensile properties, burst volume, and burst pressure. Ageing property improvement also was an important target among other parameters. Until a cure for AIDS is found, a high quality latex condom is the only effective device in the prevention of the spread of HIV, AIDS and STD's. Hence it is all the more necessary to have high quality condoms.
Resumo:
Effective solids-liquid separation is the basic concept of any wastewater treatment system. Biological treatment methods involve microorganisms for the treatment of wastewater. Conventional activated sludge process (ASP) poses the problem of poor settleability and hence require a large footprint. Biogranulation is an effective biotechnological process which can overcome the drawbacks of conventional ASP to a great extent. Aerobic granulation represents an innovative cell immobilization strategy in biological wastewater treatment. Aerobic granules are selfimmobilized microbial aggregates that are cultivated in sequencing batch reactors (SBRs). Aerobic granules have several advantages over conventional activated sludge flocs such as a dense and compact microbial structure, good settleability and high biomass retention. For cells in a culture to aggregate, a number of conditions have to be satisfied. Hence aerobic granulation is affected by many operating parameters. The organic loading rate (OLR) helps to enrich different bacterial species and to influence the size and settling ability of granules. Hence, OLR was argued as an influencing parameter by helping to enrich different bacterial species and to influence the size and settling ability of granules. Hydrodynamic shear force, caused by aeration and measured as superficial upflow air velocity (SUAV), has a strong influence and hence it is used to control the granulation process. Settling time (ST) and volume exchange ratio (VER) are also two key influencing factors, which can be considered as selection pressures responsible for aerobic granulation based on the concept of minimal settling velocity. Hence, these four parameters - OLR, SUAV, ST and VER- were selected as major influencing parametersfor the present study. Influence of these four parameters on aerobic granulation was investigated in this work
Resumo:
This work presents Bayes invariant quadratic unbiased estimator, for short BAIQUE. Bayesian approach is used here to estimate the covariance functions of the regionalized variables which appear in the spatial covariance structure in mixed linear model. Firstly a brief review of spatial process, variance covariance components structure and Bayesian inference is given, since this project deals with these concepts. Then the linear equations model corresponding to BAIQUE in the general case is formulated. That Bayes estimator of variance components with too many unknown parameters is complicated to be solved analytically. Hence, in order to facilitate the handling with this system, BAIQUE of spatial covariance model with two parameters is considered. Bayesian estimation arises as a solution of a linear equations system which requires the linearity of the covariance functions in the parameters. Here the availability of prior information on the parameters is assumed. This information includes apriori distribution functions which enable to find the first and the second moments matrix. The Bayesian estimation suggested here depends only on the second moment of the prior distribution. The estimation appears as a quadratic form y'Ay , where y is the vector of filtered data observations. This quadratic estimator is used to estimate the linear function of unknown variance components. The matrix A of BAIQUE plays an important role. If such a symmetrical matrix exists, then Bayes risk becomes minimal and the unbiasedness conditions are fulfilled. Therefore, the symmetry of this matrix is elaborated in this work. Through dealing with the infinite series of matrices, a representation of the matrix A is obtained which shows the symmetry of A. In this context, the largest singular value of the decomposed matrix of the infinite series is considered to deal with the convergence condition and also it is connected with Gerschgorin Discs and Poincare theorem. Then the BAIQUE model for some experimental designs is computed and compared. The comparison deals with different aspects, such as the influence of the position of the design points in a fixed interval. The designs that are considered are those with their points distributed in the interval [0, 1]. These experimental structures are compared with respect to the Bayes risk and norms of the matrices corresponding to distances, covariance structures and matrices which have to satisfy the convergence condition. Also different types of the regression functions and distance measurements are handled. The influence of scaling on the design points is studied, moreover, the influence of the covariance structure on the best design is investigated and different covariance structures are considered. Finally, BAIQUE is applied for real data. The corresponding outcomes are compared with the results of other methods for the same data. Thereby, the special BAIQUE, which estimates the general variance of the data, achieves a very close result to the classical empirical variance.
Resumo:
A real-time analysis of renewable energy sources, such as arable crops, is of great importance with regard to an optimised process management, since aspects of ecology and biodiversity are considered in crop production in order to provide a sustainable energy supply by biomass. This study was undertaken to explore the potential of spectroscopic measurement procedures for the prediction of potassium (K), chloride (Cl), and phosphate (P), of dry matter (DM) yield, metabolisable energy (ME), ash and crude fibre contents (ash, CF), crude lipid (EE), nitrate free extracts (NfE) as well as of crude protein (CP) and nitrogen (N), respectively in pretreated samples and undisturbed crops. Three experiments were conducted, one in a laboratory using near infrared reflectance spectroscopy (NIRS) and two field spectroscopic experiments. Laboratory NIRS measurements were conducted to evaluate to what extent a prediction of quality parameters is possible examining press cakes characterised by a wide heterogeneity of their parent material. 210 samples were analysed subsequent to a mechanical dehydration using a screw press. Press cakes serve as solid fuel for thermal conversion. Field spectroscopic measurements were carried out with regard to further technical development using different field grown crops. A one year lasting experiment over a binary mixture of grass and red clover examined the impact of different degrees of sky cover on prediction accuracies of distinct plant parameters. Furthermore, an artificial light source was used in order to evaluate to what extent such a light source is able to minimise cloud effects on prediction accuracies. A three years lasting experiment with maize was conducted in order to evaluate the potential of off-nadir measurements inside a canopy to predict different quality parameters in total biomass and DM yield using one sensor for a potential on-the-go application. This approach implements a measurement of the plants in 50 cm segments, since a sensor adjusted sideways is not able to record the entire plant height. Calibration results obtained by nadir top-of-canopy reflectance measurements were compared to calibration results obtained by off-nadir measurements. Results of all experiments approve the applicability of spectroscopic measurements for the prediction of distinct biophysical and biochemical parameters in the laboratory and under field conditions, respectively. The estimation of parameters could be conducted to a great extent with high accuracy. An enhanced basis of calibration for the laboratory study and the first field experiment (grass/clover-mixture) yields in improved robustness of calibration models and allows for an extended application of spectroscopic measurement techniques, even under varying conditions. Furthermore, off-nadir measurements inside a canopy yield in higher prediction accuracies, particularly for crops characterised by distinct height increment as observed for maize.
Resumo:
Extensive grassland biomass for bioenergy production has long been subject of scientific research. The possibility of combining nature conservation goals with a profitable management while reducing competition with food production has created a strong interest in this topic. However, the botanical composition will play a key role for solid fuel quality of grassland biomass and will have effects on the combustion process by potentially causing corrosion, emission and slagging. On the other hand, botanical composition will affect anaerobic digestibility and thereby the biogas potential. In this thesis aboveground biomass from the Jena-Experiment plots was harvested in 2008 and 2009 and analysed for the most relevant chemical constituents effecting fuel quality and anaerobic digestibility. Regarding combustion, the following parameters were of main focus: higher heating value (HHV), gross energy yield (GE), ash content, ash softening temperature (AST), K, Ca, Mg, N, Cl and S content. For biogas production the following parameters were investigated: substrate specific methane yield (CH4 sub), area specific methane yield (CH4 area), crude fibre (CF), crude protein (CP), crude lipid (CL) and nitrogen-free extract (NfE). Furthermore, an improvement of the fuel quality was investigated through applying the Integrated generation of solid Fuel and Biogas from Biomass (IFBB) procedure. Through the specific setup of the Jena-Experiment it was possible to outline the changes of these parameters along two diversity gradients: (i) species richness (SR; 1 to 60 species) and (ii) functional group (grasses, legumes, small herbs and tall herbs) presence. This was a novel approach on investigating the bioenergy characteristic of extensive grassland biomass and gave detailed insight in the sward-composition¬ - bioenergy relations such as: (i) the most relevant SR effect was the increase of energy yield for both combustion (annual GE increased by 26% from SR8→16 and by 65% from SR8→60) and anaerobic digestion (annual CH4 area increased by 22% from SR8→16 and by 49% from SR8→60) through a strong interaction of SR with biomass yield; (ii) legumes play a key role for the utilization of grassland biomass for energy production as they increase the energy content of the substrate (HHV and CH4 sub) and the energy yield (GE and CH4 area); (iii) combustion is the conversion technique that will yield the highest energy output but requires an improvement of the solid fuel quality in order to reduce the risk of corrosion, emission and slagging related problems. This was achieved through applying the IFBB-procedure, with reductions in ash (by 23%), N (28%), K (85%), Cl (56%) and S (59%) and equal levels of concentrations along the SR gradient.
Resumo:
Despite the many models developed for phosphorus concentration prediction at differing spatial and temporal scales, there has been little effort to quantify uncertainty in their predictions. Model prediction uncertainty quantification is desirable, for informed decision-making in river-systems management. An uncertainty analysis of the process-based model, integrated catchment model of phosphorus (INCA-P), within the generalised likelihood uncertainty estimation (GLUE) framework is presented. The framework is applied to the Lugg catchment (1,077 km2), a River Wye tributary, on the England–Wales border. Daily discharge and monthly phosphorus (total reactive and total), for a limited number of reaches, are used to initially assess uncertainty and sensitivity of 44 model parameters, identified as being most important for discharge and phosphorus predictions. This study demonstrates that parameter homogeneity assumptions (spatial heterogeneity is treated as land use type fractional areas) can achieve higher model fits, than a previous expertly calibrated parameter set. The model is capable of reproducing the hydrology, but a threshold Nash-Sutcliffe co-efficient of determination (E or R 2) of 0.3 is not achieved when simulating observed total phosphorus (TP) data in the upland reaches or total reactive phosphorus (TRP) in any reach. Despite this, the model reproduces the general dynamics of TP and TRP, in point source dominated lower reaches. This paper discusses why this application of INCA-P fails to find any parameter sets, which simultaneously describe all observed data acceptably. The discussion focuses on uncertainty of readily available input data, and whether such process-based models should be used when there isn’t sufficient data to support the many parameters.
Resumo:
Climate change science is increasingly concerned with methods for managing and integrating sources of uncertainty from emission storylines, climate model projections, and ecosystem model parameterizations. In tropical ecosystems, regional climate projections and modeled ecosystem responses vary greatly, leading to a significant source of uncertainty in global biogeochemical accounting and possible future climate feedbacks. Here, we combine an ensemble of IPCC-AR4 climate change projections for the Amazon Basin (eight general circulation models) with alternative ecosystem parameter sets for the dynamic global vegetation model, LPJmL. We evaluate LPJmL simulations of carbon stocks and fluxes against flux tower and aboveground biomass datasets for individual sites and the entire basin. Variability in LPJmL model sensitivity to future climate change is primarily related to light and water limitations through biochemical and water-balance-related parameters. Temperature-dependent parameters related to plant respiration and photosynthesis appear to be less important than vegetation dynamics (and their parameters) for determining the magnitude of ecosystem response to climate change. Variance partitioning approaches reveal that relationships between uncertainty from ecosystem dynamics and climate projections are dependent on geographic location and the targeted ecosystem process. Parameter uncertainty from the LPJmL model does not affect the trajectory of ecosystem response for a given climate change scenario and the primary source of uncertainty for Amazon 'dieback' results from the uncertainty among climate projections. Our approach for describing uncertainty is applicable for informing and prioritizing policy options related to mitigation and adaptation where long-term investments are required.
Resumo:
The formulation of a new process-based crop model, the general large-area model (GLAM) for annual crops is presented. The model has been designed to operate on spatial scales commensurate with those of global and regional climate models. It aims to simulate the impact of climate on crop yield. Procedures for model parameter determination and optimisation are described, and demonstrated for the prediction of groundnut (i.e. peanut; Arachis hypogaea L.) yields across India for the period 1966-1989. Optimal parameters (e.g. extinction coefficient, transpiration efficiency, rate of change of harvest index) were stable over space and time, provided the estimate of the yield technology trend was based on the full 24-year period. The model has two location-specific parameters, the planting date, and the yield gap parameter. The latter varies spatially and is determined by calibration. The optimal value varies slightly when different input data are used. The model was tested using a historical data set on a 2.5degrees x 2.5degrees grid to simulate yields. Three sites are examined in detail-grid cells from Gujarat in the west, Andhra Pradesh towards the south, and Uttar Pradesh in the north. Agreement between observed and modelled yield was variable, with correlation coefficients of 0.74, 0.42 and 0, respectively. Skill was highest where the climate signal was greatest, and correlations were comparable to or greater than correlations with seasonal mean rainfall. Yields from all 35 cells were aggregated to simulate all-India yield. The correlation coefficient between observed and simulated yields was 0.76, and the root mean square error was 8.4% of the mean yield. The model can be easily extended to any annual crop for the investigation of the impacts of climate variability (or change) on crop yield over large areas. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Until recently, there has been little investigation concerning the poor indoor air quality (IAQ) in classrooms. Despite the evidence that the educational building systems in many of the UK institutions have significant defects that may degrade IAQ, systematic assessments of IAQ measurements has been rarely undertaken. When undertaking IAQ measurement, there is a difficult task of representing and characterizing the environment parameters. Although technologies exist to measure these parameters, direct measurements especially in a naturally ventilated spaces are often difficult. This paper presents a methodology for developing a method to characterize indoor environment flow parameters as well as the Carbon Dioxide (CO2) concentrations. Thus, CO2 concentration level can be influenced by the differences in the selection of sampling points and heights. However, because this research focuses on natural ventilation in classrooms, air exchange is provided mainly by air infiltration. It is hoped that the methodology developed and evaluated in this research can effectively simplify the process of estimating the parameters for a systematic assessment of IAQ measurements in a naturally ventilated classrooms.
Resumo:
The effect of fruit ripeness on the antioxidant content of 'Hojiblanca' virgin olive oils was studied. Seasonal changes were monitored at bi-weekly intervals for three consecutive crop years. Phenolic content, tocopherol composition, bitterness index, carotenoid and chlorophyllic pigments and oxidative stability were analysed. In general, the antioxidants and the related parameters decreased as olive fruit ripened. The phenolics and bitterness, closely related parameters, did not present significant differences among years. Although in general, the tocopherols decreased during olive ripening gamma-tocopherol increased. Differences between crop years were found only for total tocopherols and alpha-tocopherol, which showed higher content in low rainfall year oils. The pigment content decreased during ripening, chlorophyll changing faster. For low rainfall years, the level of pigments was higher, reaching significant differences between yields. Significant differences among years were found for oil oxidative stability; higher values were obtained for drought years. A highly significant prediction model for oxidative stability has been obtained. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A class identification algorithms is introduced for Gaussian process(GP)models.The fundamental approach is to propose a new kernel function which leads to a covariance matrix with low rank,a property that is consequently exploited for computational efficiency for both model parameter estimation and model predictions.The objective of either maximizing the marginal likelihood or the Kullback–Leibler (K–L) divergence between the estimated output probability density function(pdf)and the true pdf has been used as respective cost functions.For each cost function,an efficient coordinate descent algorithm is proposed to estimate the kernel parameters using a one dimensional derivative free search, and noise variance using a fast gradient descent algorithm. Numerical examples are included to demonstrate the effectiveness of the new identification approaches.
Resumo:
Following previous studies, the aim of this work is to further investigate the application of colloidal gas aphrons (CGA) to the recovery of polyphenols from a grape marc ethanolic extract with particular focus on exploring the use of a non-ionic food grade surfactant (Tween 20) as an alternative to the more toxic cationic surfactant CTAB. Different batch separation trials in a flotation column were carried out to evaluate the influence of surfactant type and concentration and processing parameters (such as pH, drainage time, CGA/extract volumetric and molar ratio) on the recovery of total and specific phenolic compounds. The possibility of achieving selective separation and concentration of different classes of phenolic compounds and non-phenolic compounds was also assessed, together with the influence of the process on the antioxidant capacity of the recovered compounds. The process led to good recovery, limited loss of antioxidant capacity, but low selectivity under the tested conditions. Results showed the possibility of using Tween 20 with a separation mechanism mainly driven by hydrophobic interactions. Volumetric ratio rather than the molar ratio was the key operating parameter in the recovery of polyphenols by CGA.
Pozzolanic behavior of bamboo leaf ash: Characterization and determination of the kinetic parameters
Resumo:
The paper presents a characterization and study of the pozzolanic behavior between calcium hydroxide (CH) and bamboo leaf ash (BLAsh), which was obtained by calcining bamboo leaves at 600 degrees C for 2 h in a laboratory electric furnace. To evaluate the pozzolanic behavior the conductometric method was used, which is based on the measurement of the electrical conductivity in a BLAsh/CH solution with the reaction time. Later, the kinetic parameters are quantified by applying a kinetic-diffusive model. The kinetic parameters that characterize the process (in particular, the reaction rate constant and free energy of activation) were determined with relative accuracy in the fitting process of the model. The pozzolanic activity is quantitatively evaluated according to the values obtained of the kinetic parameters. Other experimental techniques, such as X-ray diffraction (XRD) and scanning electron microscopy (SEM), were also employed. The results show that this kind of ash is formed by silica with a completely amorphous nature and a high pozzolanic activity. The correlation between the values of free energy of activation (Delta G(#)) and the reaction rate constants (K) are in correspondence with the theoretical studies about the rate processes reported in the literature. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this study was to select the optimal operational conditions for the production of instant soy protein isolate (SPI) by pulsed fluid bed agglomeration. The spray-dried SPI was characterized as being a cohesive powder, presenting cracks and channeling formation during its fluidization (Geldart type A). The process was carried out in a pulsed fluid bed, and aqueous maltodextrin solution was used as liquid binder. Air pulsation, at a frequency of 600 rpm, was used to fluidize the cohesive SPI particles and to allow agglomeration to occur. Seventeen tests were performed according to a central composite design. Independent variables were (i) feed flow rate (0.5-3.5 g/min), (ii) atomizing air pressure (0.5-1.5 bar) and (iii) binder concentration (10-50%). Mean particle diameter, process yield and product moisture were analyzed as responses. Surface response analysis led to the selection of optimal operational parameters, following which larger granules with low moisture content and high process yield were produced. Product transformations were also evaluated by the analysis of size distribution, flowability, cohesiveness and wettability. When compared to raw material, agglomerated particles were more porous and had a more irregular shape, presenting a wetting time decrease, free-flow improvement and cohesiveness reduction. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The main goal of this work was to evaluate thermodynamic parameters of the soybean oil extraction process using ethanol as solvent. The experimental treatments were as follows: aqueous solvents with water contents varying from 0 to 13% (mass basis) and extraction temperature varying from 50 to 100 degrees C. The distribution coefficients of oil at equilibrium have been used to calculate enthalpy, entropy and free energy changes. The results indicate that oil extraction process with ethanol is feasible and spontaneous, mainly under higher temperature. Also, the influence of water level in the solvent and temperature were analysed using the response surface methodology (RSM). It can be noted that the extraction yield was highly affected by both independent variables. A joint analysis of thermodynamic and RSM indicates the optimal level of solvent hydration and temperature to perform the extraction process.