899 resultados para Process improvement
Resumo:
In today’s modern manufacturing industry there is an increasing need to improve internal processes to meet diverse client needs. Process re-engineering is an important activity that is well understood by industry but its rate of application within small to medium size enterprises (SME) is less developed. Business pressures shift the focus of SMEs toward winning new projects and contracts rather than developing long-term, sustainable manufacturing processes. Variations in manufacturing processes are inevitable, but the amount of non-conformity often exceeds the acceptable levels. This paper is focused on the re-engineering of the manufacturing and verification procedure for discrete parts production with the aim of enhancing process control and product verification. The ideologies of the ‘Push’ and ‘Pull’ approaches to manufacturing are useful in the context of process re-engineering for data improvement. Currently information is pulled from the market and prominent customers, and manufacturing companies always try to make the right product, by following customer procedures that attempt to verify against specifications. This approach can result in significant quality control challenges. The aim of this paper is to highlight the importance of process re-engineering in product verification in SMEs. Leadership, culture, ownership and process management are among the main attributes required for the successful deployment of process re-engineering. This paper presents the findings from a case study showcasing the application of a modified re-engingeering method for the manufacturing and verification process. The findings from the case study indicate there are several advantages to implementing the re-engineering method outlined in this paper.
Resumo:
The world is in a period of reflection about social and economic models. In particular there is a review of the capacities that countries have for improving their competitiveness. The experiences in a society are part of the process of learning and knowledge development in that society: especially in the development of communities. Risks appear continually in the process of the search for, analysis and implementation of solutions to problems. This paper discusses the issues related to the improvement of productivity and knowledge in a society, the risk that poor or even declining productivity brings to the communities and the need to develop people that support the decision making process in communities.The approach to improve the communities' development is through the design of a research programme in knowledge management based on distance learning. The research programme implementation is designed to provide value added to the decisions in communities in order to use collective intelligence, solve collective problems and to achieve goals that support local solutions. This program is organized and focused on four intelligence areas, artificial, collective, sentient and strategic. These areas are productivity related and seek to reduce the risk of lack of competitiveness through formal and integrated problem analysis. In a country such as Colombia, where different regions face varying problems to solve and there is a low level of infrastructure, the factors of production such as knowledge, skilled labour and "soft" infrastructure can be a way to develop the society.This entails using the local physical resources adequately for creating value with the support of people in the region to lead the analysis and search for solutions in the communities. The paper will describe the framework and programme and suggest how it could be applied in Colombia.
Resumo:
The purpose of this descriptive study was to evaluate the banking and insurance technology curriculum at ten junior colleges in Taiwan. The study focused on curriculum, curriculum materials, instruction, support services, student achievement and job performance. Data was collected from a diverse sample of faculty, students, alumni, and employers. ^ Questionnaires on the evaluation of curriculum at technical junior colleges were developed for use in this specific case. Data were collected from the sample described above and analyzed utilizing ANOVA, T-Tests and crosstabulations. Findings are presented which indicate that there is room for improvement in terms of meeting individual students' needs. ^ Using Stufflebeam's CIPP model for curriculum evaluation it was determined that the curriculum was adequate in terms of the knowledge and skills imparted to students. However, students were dissatisfied with the rigidity of the curriculum and the lack of opportunity to satisfy the individual needs of students. Employers were satisfied with both the academic preparation of students and their on the job performance. ^ In sum, the curriculum of the two-year banking and insurance technology programs of junior college in Taiwan was shown to have served adequately preparing a work force to enter businesses. It is now time to look toward the future and adapt the curriculum and instruction for the future needs of the ever evolving high-tech society. ^
Resumo:
Increasing parental involvement was made an important goal for all Florida schools in educational reform legislation in the 1990's. A forum for this input was established and became known as the School Advisory Council (SAC). To demonstrate the importance of process and inclusion, a south Florida school district and its local teacher's union agreed on the following five goals for SACs: (a) to foster an environment of professional collaboration among all stakeholders, (b) to assist in the preparation and evaluation of the school improvement plan, (c) to address all state and district goals, (d) to serve as the avenue for authentic and representative input from all stakeholders, and (e) to ensure the continued existence of the consensus-building process on all issues related to the school's instructional program. ^ The purpose of this study was to determine to what extent and in what ways the parent members of one south Florida middle school's SAC achieved the five district goals during its first three years of implementation. The primary participants were 16 parents who served as members of the SAC, while 16 non-parent members provided perspective on parent involvement as “outside sources.” Being qualitative by design, factors such as school climate, leadership styles, and the quality of parental input were described from data collected from four sources: parent interviews, a questionnaire of non-parents, researcher observations, and relevant documents. A cross-case analysis of all data informed a process evaluation that described the similarities and differences of intended and observed outcomes of parent involvement from each source using Stake's descriptive matrix model. A formative evaluation of the process compared the observed outcomes with standards set for successful SACs, such as the district's five goals. ^ The findings indicated that parents elected to the SACs did not meet the intended goals set by the state and district. The school leadership did not foster an environment of professional collaboration and authentic decision-making for parents and other stakeholders. The overall process did not include consensus-building, and there was little if any input by parents on school improvement and other important issues relating to the instructional program. Only two parents gave the SAC a successful rating for involving parents in the decision-making process. Although compliance was met in many of the procedural transactions of the SAC, the reactions of parents to their perceived role and influence often reflected feelings of powerlessness and frustration with a process that many thought lacked meaningfulness and productivity. Two conclusions made from this study are as follows: (a) that the role of the principal in the collaborative process is pivotal, and (b) that the normative-re-educative approach to change would be most appropriate for SACs. ^
Resumo:
Plasma sprayed aluminum oxide ceramic coating is widely used due to its outstanding wear, corrosion, and thermal shock resistance. But porosity is the integral feature in the plasma sprayed coating which exponentially degrades its properties. In this study, process maps were developed to obtain Al2O3-CNT composite coatings with the highest density (i.e. lowest porosity) and improved mechanical and wear properties. Process map is defined as a set of relationships that correlates large number of plasma processing parameters to the coating properties. Carbon nanotubes (CNTs) were added as reinforcement to Al2O 3 coating to improve the fracture toughness and wear resistance. Two novel powder processing approaches viz spray drying and chemical vapor growth were adopted to disperse CNTs in Al2O3 powder. The degree of CNT dispersion via chemical vapor deposition (CVD) was superior to spray drying but CVD could not synthesize powder in large amount. Hence optimization of plasma processing parameters and process map development was limited to spray dried Al2O3 powder containing 0, 4 and 8 wt. % CNTs. An empirical model using Pareto diagram was developed to link plasma processing parameters with the porosity of coating. Splat morphology as a function of plasma processing parameter was also studied to understand its effect on mechanical properties. Addition of a mere 1.5 wt. % CNTs via CVD technique showed ∼27% and ∼24% increase in the elastic modulus and fracture toughness respectively. Improved toughness was attributed to combined effect of lower porosity and uniform dispersion of CNTs which promoted the toughening by CNT bridging, crack deflection and strong CNT/Al2O3 interface. Al2O 3-8 wt. % CNT coating synthesized using spray dried powder showed 73% improvement in the fracture toughness when porosity reduced from 4.7% to 3.0%. Wear resistance of all coatings at room and elevated temperatures (573 K, 873 K) showed improvement with CNT addition and decreased porosity. Such behavior was due to improved mechanical properties, protective film formation due to tribochemical reaction, and CNT bridging between the splats. Finally, process maps correlating porosity content, CNT content, mechanical properties, and wear properties were developed.
Resumo:
In the U.S., construction accidents remain a significant economic and social problem. Despite recent improvement, the Construction industry, generally, has lagged behind other industries in implementing safety as a total management process for achieving zero accidents and developing a high-performance safety culture. One aspect of this total approach to safety that has frustrated the construction industry the most has been “measurement”, which involves identifying and quantifying the factors that critically influence safe work behaviors. The basic problem attributed is the difficulty in assessing what to measure and how to measure it—particularly the intangible aspects of safety. Without measurement, the notion of continuous improvement is hard to follow. This research was undertaken to develop a strategic framework for the measurement and continuous improvement of total safety in order to achieve and sustain the goal of zero accidents, while improving the quality, productivity and the competitiveness of the construction industry as it moves forward. The research based itself on an integral model of total safety that allowed decomposition of safety into interior and exterior characteristics using a multiattribute analysis technique. Statistical relationships between total safety dimensions and safety performance (measured by safe work behavior) were revealed through a series of latent variables (factors) that describe the total safety environment of a construction organization. A structural equation model (SEM) was estimated for the latent variables to quantify relationships among them and between these total safety determinants and safety performance of a construction organization. The developed SEM constituted a strategic framework for identifying, measuring, and continuously improving safety as a total concern for achieving and sustaining the goal of zero accidents.
Resumo:
Increasing parental involvement was made an important goal for all Florida schools in educational reform legislation in the 1990's. A forum for this input was established and became known as the School Advisory Council (SAC). To demonstrate the importance of process and inclusion, a south Florida school district and its local teacher's union agreed on the following five goals for SACs: (a) to foster an environment of professional collaboration among all stakeholders, (b) to assist in the preparation and evaluation of the school improvement plan, (c) to address all state and district goals, (d) to serve as the avenue for authentic and representative input from all stakeholders, and (e) to ensure the continued existence of the consensus-building process on all issues related to the school's instructional program. The purpose of this study was to determine to what extent and in what ways the parent members of one south Florida middle school's SAC achieved the five district goals during its first three years of implementation. The primary participants were 16 parents who served as members of the SAC, while 16 non-parent members provided perspective on parent involvement as "outside sources." Being qualitative by design, factors such as school climate, leadership styles, and the quality of parental input were described from data collected from four sources: parent interviews, a questionnaire of non-parents, researcher observations, and relevant documents. A cross-case analysis of all data informed a process evaluation that described the similarities and differences of intended and observed outcomes of parent involvement from each source using Stake's descriptive matrix model. A formative evaluation of the process compared the observed outcomes with standards set for successful SACs, such as the district's five goals. The findings indicated that parents elected to the SACs did not meet the intended goals set by the state and district. The school leadership did not foster an environment of professional collaboration and authentic decision-making for parents and other stakeholders. The overall process did not include consensus-building, and there was little if any input by parents on school improvement and other important issues relating to the instructional program. Only two parents gave the SAC a successful rating for involving parents in the decision-making process. Although compliance was met in many of the procedural transactions of the SAC, the reactions of parents to their perceived role and influence often reflected feelings of powerlessness and frustration with a process that many thought lacked meaningfulness and productivity. Two conclusions made from this study are as follows: (a) that the role of the principal in the collaborative process is pivotal, and (b) that the normative-re-educative approach to change would be most appropriate for SACs.
Resumo:
Soil erosion by water is a major driven force causing land degradation. Laboratory experiments, on-site field study, and suspended sediments measurements were major fundamental approaches to study the mechanisms of soil water erosion and to quantify the erosive losses during rain events. The experimental research faces the challenge to extent the result to a wider spatial scale. Soil water erosion modeling provides possible solutions for scaling problems in erosion research, and is of principal importance to better understanding the governing processes of water erosion. However, soil water erosion models were considered to have limited value in practice. Uncertainties in hydrological simulations are among the reasons that hindering the development of water erosion model. Hydrological models gained substantial improvement recently and several water erosion models took advantages of the improvement of hydrological models. It is crucial to know the impact of changes in hydrological processes modeling on soil erosion simulation.
This dissertation work first created an erosion modeling tool (GEOtopSed) that takes advantage of the comprehensive hydrological model (GEOtop). The newly created tool was then tested and evaluated at an experimental watershed. The GEOtopSed model showed its ability to estimate multi-year soil erosion rate with varied hydrological conditions. To investigate the impact of different hydrological representations on soil erosion simulation, a 11-year simulation experiment was conducted for six models with varied configurations. The results were compared at varied temporal and spatial scales to highlight the roles of hydrological feedbacks on erosion. Models with simplified hydrological representations showed agreement with GEOtopSed model on long temporal scale (longer than annual). This result led to an investigation for erosion simulation at different rainfall regimes to check whether models with different hydrological representations have agreement on the soil water erosion responses to the changing climate. Multi-year ensemble simulations with different extreme precipitation scenarios were conducted at seven climate regions. The differences in erosion simulation results showed the influences of hydrological feedbacks which cannot be seen by purely rainfall erosivity method.
Resumo:
Business Process Management (BPM) is able to organize and frame a company focusing in the improvement or assurance of performance in order to gain competitive advantage. Although it is believed that BPM improves various aspects of organizational performance, there has been a lack of empirical evidence about this. The present study has the purpose to develop a model to show the impact of business process management in organizational performance. To accomplish that, the theoretical basis required to know the elements that configurate BPM and the measures that can evaluate the BPM success on organizational performance is built through a systematic literature review (SLR). Then, a research model is proposed according to SLR results. Empirical data will be collected from a survey of larg and mid-sized industrial and service companies headquartered in Brazil. A quantitative analysis will be performed using structural equation modeling (SEM) to show if the direct effects among BPM and organizational performance can be considered statistically significant. At the end will discuss these results and their managerial and cientific implications.Keywords: Business process management (BPM). Organizational performance. Firm performance. Business models. Structural Equation Modeling. Systematic Literature Review.
Resumo:
Data mining, as a heatedly discussed term, has been studied in various fields. Its possibilities in refining the decision-making process, realizing potential patterns and creating valuable knowledge have won attention of scholars and practitioners. However, there are less studies intending to combine data mining and libraries where data generation occurs all the time. Therefore, this thesis plans to fill such a gap. Meanwhile, potential opportunities created by data mining are explored to enhance one of the most important elements of libraries: reference service. In order to thoroughly demonstrate the feasibility and applicability of data mining, literature is reviewed to establish a critical understanding of data mining in libraries and attain the current status of library reference service. The result of the literature review indicates that free online data resources other than data generated on social media are rarely considered to be applied in current library data mining mandates. Therefore, the result of the literature review motivates the presented study to utilize online free resources. Furthermore, the natural match between data mining and libraries is established. The natural match is explained by emphasizing the data richness reality and considering data mining as one kind of knowledge, an easy choice for libraries, and a wise method to overcome reference service challenges. The natural match, especially the aspect that data mining could be helpful for library reference service, lays the main theoretical foundation for the empirical work in this study. Turku Main Library was selected as the case to answer the research question: whether data mining is feasible and applicable for reference service improvement. In this case, the daily visit from 2009 to 2015 in Turku Main Library is considered as the resource for data mining. In addition, corresponding weather conditions are collected from Weather Underground, which is totally free online. Before officially being analyzed, the collected dataset is cleansed and preprocessed in order to ensure the quality of data mining. Multiple regression analysis is employed to mine the final dataset. Hourly visits are the independent variable and weather conditions, Discomfort Index and seven days in a week are dependent variables. In the end, four models in different seasons are established to predict visiting situations in each season. Patterns are realized in different seasons and implications are created based on the discovered patterns. In addition, library-climate points are generated by a clustering method, which simplifies the process for librarians using weather data to forecast library visiting situation. Then the data mining result is interpreted from the perspective of improving reference service. After this data mining work, the result of the case study is presented to librarians so as to collect professional opinions regarding the possibility of employing data mining to improve reference services. In the end, positive opinions are collected, which implies that it is feasible to utilizing data mining as a tool to enhance library reference service.
Resumo:
The aim of the project was to improve an existing testing machine that is produced by the company EVOLEO Technologies. New conceptions of each part have been invented in order to produce an innovative unit that combines optimal segments from the old construction with the new, improved ones. The machine is meant to be testing different kind of devices that use specific elements like: buttons, knobs, monitors. The main purpose is to create various concepts of components that could be changed in order to lower the cost, weight or to simplify the operating process. Figure 1. shows the already existing discussed device.
Resumo:
This thesis describes a collection of studies into the electrical response of a III-V MOS stack comprising metal/GaGdO/GaAs layers as a function of fabrication process variables and the findings of those studies. As a result of this work, areas of improvement in the gate process module of a III-V heterostructure MOSFET were identified. Compared to traditional bulk silicon MOSFET design, one featuring a III-V channel heterostructure with a high-dielectric-constant oxide as the gate insulator provides numerous benefits, for example: the insulator can be made thicker for the same capacitance, the operating voltage can be made lower for the same current output, and improved output characteristics can be achieved without reducing the channel length further. It is known that transistors composed of III-V materials are most susceptible to damage induced by radiation and plasma processing. These devices utilise sub-10 nm gate dielectric films, which are prone to contamination, degradation and damage. Therefore, throughout the course of this work, process damage and contamination issues, as well as various techniques to mitigate or prevent those have been investigated through comparative studies of III-V MOS capacitors and transistors comprising various forms of metal gates, various thicknesses of GaGdO dielectric, and a number of GaAs-based semiconductor layer structures. Transistors which were fabricated before this work commenced, showed problems with threshold voltage control. Specifically, MOSFETs designed for normally-off (VTH > 0) operation exhibited below-zero threshold voltages. With the results obtained during this work, it was possible to gain an understanding of why the transistor threshold voltage shifts as the gate length decreases and of what pulls the threshold voltage downwards preventing normally-off device operation. Two main culprits for the negative VTH shift were found. The first was radiation damage induced by the gate metal deposition process, which can be prevented by slowing down the deposition rate. The second was the layer of gold added on top of platinum in the gate metal stack which reduces the effective work function of the whole gate due to its electronegativity properties. Since the device was designed for a platinum-only gate, this could explain the below zero VTH. This could be prevented either by using a platinum-only gate, or by matching the layer structure design and the actual gate metal used for the future devices. Post-metallisation thermal anneal was shown to mitigate both these effects. However, if post-metallisation annealing is used, care should be taken to ensure it is performed before the ohmic contacts are formed as the thermal treatment was shown to degrade the source/drain contacts. In addition, the programme of studies this thesis describes, also found that if the gate contact is deposited before the source/drain contacts, it causes a shift in threshold voltage towards negative values as the gate length decreases, because the ohmic contact anneal process affects the properties of the underlying material differently depending on whether it is covered with the gate metal or not. In terms of surface contamination; this work found that it causes device-to-device parameter variation, and a plasma clean is therefore essential. This work also demonstrated that the parasitic capacitances in the system, namely the contact periphery dependent gate-ohmic capacitance, plays a significant role in the total gate capacitance. This is true to such an extent that reducing the distance between the gate and the source/drain ohmic contacts in the device would help with shifting the threshold voltages closely towards the designed values. The findings made available by the collection of experiments performed for this work have two major applications. Firstly, these findings provide useful data in the study of the possible phenomena taking place inside the metal/GaGdO/GaAs layers and interfaces as the result of chemical processes applied to it. In addition, these findings allow recommendations as to how to best approach fabrication of devices utilising these layers.
Resumo:
BACKGROUND: Smoking is a major risk factor for chronic obstructive pulmonary disease (COPD). For current smokers who are diagnosed with COPD, their first treatment option is to stop smoking. Motivation is necessary for long-term smoking cessation; therefore, when designing smoking cessation programs, the patients' needs and preferences should be considered. We focused on COPD patients' experiences with existing smoking cessation programs and evaluated their preferences for the improvement of these programs. METHODS: We conducted 18 guideline-based interviews with COPD patients between April and June 2014 in Germany. Each patient with COPD, who was a current or past smoker and had made at least one attempt to quit smoking in the past 5 years, was included in the study. We audiotaped, verbatim transcribed, and evaluated the interviews, using content analysis. RESULTS: The patients had broad and different experiences with pharmaceutical, behavioral, and alternative approaches that supported or negatively influenced the smoking cessation process. Pharmaceuticals were viewed as an expensive alternative with many side effects although they helped to stop cravings for a few moments. Furthermore, the bad structure and impersonal content of the seminars for smoking cessation negatively influenced group cohesion, and therefore degrading the patients' motivation to stop smoking. Alternative methods, such as acupuncture and hypnosis were mostly ineffective in smoking cessation, but in some cases, served as motivational strategies. CONCLUSION: Negative experiences with smoking cessation were explained by the patients' lack of motivation or resolution. Other negative experiences, such as the structure of seminars for smoking cessation and the high price of pharmaceuticals should be addressed through policy changes to increase the patients' motivation to quit smoking.
Resumo:
International audience
Resumo:
Effective interaction between climate science and policy is important for moving climate negotiations forward to reach an ambitious global climate change deal. Lack of progress in the United Nations Framework Convention on Climate Change (UNFCCC) negotiations during recent years is a good reason for taking a closer look at the process of climate science–policy interaction to identify and eliminate existing shortcomings hindering climate policymaking. This paper examines the current state of climate science–policy interaction and suggests ways to integrate scientific input into the UNFCCC process more effectively. Suggestions relate to improvement in institutional structures, processes and procedures of the UNFCCC and the Intergovernmental Panel on Climate Change (IPCC), quality of scientific input, credibility of scientific message and public awareness of climate change.