905 resultados para Process Modelling, Viewpoint Modelling, Process Management


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The work described in this thesis focuses on the use of a design-of-experiments approach in a multi-well mini-bioreactor to enable the rapid establishments of high yielding production phase conditions in yeast, which is an increasingly popular host system in both academic and industrial laboratories. Using green fluorescent protein secreted from the yeast, Pichia pastoris, a scalable predictive model of protein yield per cell was derived from 13 sets of conditions each with three factors (temperature, pH and dissolved oxygen) at 3 levels and was directly transferable to a 7 L bioreactor. This was in clear contrast to the situation in shake flasks, where the process parameters cannot be tightly controlled. By further optimisating both the accumulation of cell density in batch and improving the fed-batch induction regime, additional yield improvement was found to be additive to the per cell yield of the model. A separate study also demonstrated that improving biomass improved product yield in a second yeast species, Saccharomyces cerevisiae. Investigations of cell wall hydrophobicity in high cell density P. pastoris cultures indicated that cell wall hydrophobin (protein) compositional changes with growth phase becoming more hydrophobic in log growth than in lag or stationary phases. This is possibly due to an increased occurrence of proteins associated with cell division. Finally, the modelling approach was validated in mammalian cells, showing its flexibility and robustness. In summary, the strategy presented in this thesis has the benefit of reducing process development time in recombinant protein production, directly from bench to bioreactor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Theprocess of manufacturing system design frequently includes modeling, and usually, this means applying a technique such as discrete event simulation (DES). However, the computer tools currently available to apply this technique enable only a superficial representation of the people that operate within the systems. This is a serious limitation because the performance of people remains central to the competitiveness of many manufacturing enterprises. Therefore, this paper explores the use of probability density functions to represent the variation of worker activity times within DES models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Manufacturing system design is an ongoing activity within industry. Modelling tools based on Discrete Event Simulation are often used by practitioners during this design cycle. However, such tools do not adequately model the behaviour of 'direct' workers in manufacturing environments. There is an important need to expand the capability of modelling to include the relationships between human centred factors (demography, attitudes, beliefs, etc), their working environment (physical and organizational), and their subsequent performance in terms of productive routines. Therefore, this paper describes research that has formed a pilot modelling methodology that is an important first step in providing such a capability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Methodologies for understanding business processes and their information systems (IS) are often criticized, either for being too imprecise and philosophical (a criticism often levied at softer methodologies) or too hierarchical and mechanistic (levied at harder methodologies). The process-oriented holonic modelling methodology combines aspects of softer and harder approaches to aid modellers in designing business processes and associated IS. The methodology uses holistic thinking and a construct known as the holon to build process descriptions into a set of models known as a holarchy. This paper describes the methodology through an action research case study based in a large design and manufacturing organization. The scientific contribution is a methodology for analysing business processes in environments that are characterized by high complexity, low volume and high variety where there are minimal repeated learning opportunities, such as large IS development projects. The practical deliverables from the project gave IS and business process improvements for the case study company.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Risk and knowledge are two concepts and components of business management which have so far been studied almost independently. This is especially true where risk management is conceived mainly in financial terms, as, for example, in the banking sector. The banking sector has sophisticated methodologies for managing risk, such as mathematical risk modeling. However. the methodologies for analyzing risk do not explicitly include knowledge management for risk knowledge creation and risk knowledge transfer. Banks are affected by internal and external changes with the consequent accommodation to new business models new regulations and the competition of big players around the world. Thus, banks have different levels of risk appetite and policies in risk management. This paper takes into consideration that business models are changing and that management is looking across the organization to identify the influence of strategic planning, information systems theory, risk management and knowledge management. These disciplines can handle the risks affecting banking that arise from different areas, but only if they work together. This creates a need to view them in an integrated way. This article sees enterprise risk management as a specific application of knowledge in order to control deviation from strategic objectives, shareholders' values and stakeholders' relationships. Before and after a modeling process it necessary to find insights into how the application of knowledge management processes can improve the understanding of risk and the implementation of enterprise risk management. The article presents a propose methodology to contribute to providing a guide for developing risk modeling knowledge and a reduction of knowledge silos, in order to improve the quality and quantity of solutions related to risk inquiries across the organization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biodiesel is fast becoming one of the key transport fuels as the world endeavours to reduce its carbon footprint and find viable alternatives to oil derived fuels. Research in the field is currently focusing on more efficient ways to produce biodiesel, with the most promising avenue of research looking into the use of heterogeneous catalysis. This article presents a framework for kinetic reaction and diffusive transport modelling of the heterogeneously catalysed transesterification of triglycerides into fatty acid methyl esters (FAMEs), unveiled by a model system of tributyrin transesterification in the presence of MgO catalysts. In particular, the paper makes recommendations on multicomponent diffusion calculations such as the diffusion coefficients and molar fluxes from infinite dilution diffusion coefficients using the Wilke and Chang correlation, intrinsic reaction kinetic studies using the Eley-Rideal kinetic mechanism with methanol adsorption as the rate determining steps and multiscale reaction-diffusion process simulation between catalytic porous and bulk reactor scales. © 2013 The Royal Society of Chemistry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 60J85, 92D25.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cell:cell bond between an immune cell and an antigen presenting cell is a necessary event in the activation of the adaptive immune response. At the juncture between the cells, cell surface molecules on the opposing cells form non-covalent bonds and a distinct patterning is observed that is termed the immunological synapse. An important binding molecule in the synapse is the T-cell receptor (TCR), that is responsible for antigen recognition through its binding with a major-histocompatibility complex with bound peptide (pMHC). This bond leads to intracellular signalling events that culminate in the activation of the T-cell, and ultimately leads to the expression of the immune eector function. The temporal analysis of the TCR bonds during the formation of the immunological synapse presents a problem to biologists, due to the spatio-temporal scales (nanometers and picoseconds) that compare with experimental uncertainty limits. In this study, a linear stochastic model, derived from a nonlinear model of the synapse, is used to analyse the temporal dynamics of the bond attachments for the TCR. Mathematical analysis and numerical methods are employed to analyse the qualitative dynamics of the nonequilibrium membrane dynamics, with the specic aim of calculating the average persistence time for the TCR:pMHC bond. A single-threshold method, that has been previously used to successfully calculate the TCR:pMHC contact path sizes in the synapse, is applied to produce results for the average contact times of the TCR:pMHC bonds. This method is extended through the development of a two-threshold method, that produces results suggesting the average time persistence for the TCR:pMHC bond is in the order of 2-4 seconds, values that agree with experimental evidence for TCR signalling. The study reveals two distinct scaling regimes in the time persistent survival probability density prole of these bonds, one dominated by thermal uctuations and the other associated with the TCR signalling. Analysis of the thermal fluctuation regime reveals a minimal contribution to the average time persistence calculation, that has an important biological implication when comparing the probabilistic models to experimental evidence. In cases where only a few statistics can be gathered from experimental conditions, the results are unlikely to match the probabilistic predictions. The results also identify a rescaling relationship between the thermal noise and the bond length, suggesting a recalibration of the experimental conditions, to adhere to this scaling relationship, will enable biologists to identify the start of the signalling regime for previously unobserved receptor:ligand bonds. Also, the regime associated with TCR signalling exhibits a universal decay rate for the persistence probability, that is independent of the bond length.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Energy efficiency and user comfort have recently become priorities in the Facility Management (FM) sector. This has resulted in the use of innovative building components, such as thermal solar panels, heat pumps, etc., as they have potential to provide better performance, energy savings and increased user comfort. However, as the complexity of components increases, the requirement for maintenance management also increases. The standard routine for building maintenance is inspection which results in repairs or replacement when a fault is found. This routine leads to unnecessary inspections which have a cost with respect to downtime of a component and work hours. This research proposes an alternative routine: performing building maintenance at the point in time when the component is degrading and requires maintenance, thus reducing the frequency of unnecessary inspections. This thesis demonstrates that statistical techniques can be used as part of a maintenance management methodology to invoke maintenance before failure occurs. The proposed FM process is presented through a scenario utilising current Building Information Modelling (BIM) technology and innovative contractual and organisational models. This FM scenario supports a Degradation based Maintenance (DbM) scheduling methodology, implemented using two statistical techniques, Particle Filters (PFs) and Gaussian Processes (GPs). DbM consists of extracting and tracking a degradation metric for a component. Limits for the degradation metric are identified based on one of a number of proposed processes. These processes determine the limits based on the maturity of the historical information available. DbM is implemented for three case study components: a heat exchanger; a heat pump; and a set of bearings. The identified degradation points for each case study, from a PF, a GP and a hybrid (PF and GP combined) DbM implementation are assessed against known degradation points. The GP implementations are successful for all components. For the PF implementations, the results presented in this thesis find that the extracted metrics and limits identify degradation occurrences accurately for components which are in continuous operation. For components which have seasonal operational periods, the PF may wrongly identify degradation. The GP performs more robustly than the PF, but the PF, on average, results in fewer false positives. The hybrid implementations, which are a combination of GP and PF results, are successful for 2 of 3 case studies and are not affected by seasonal data. Overall, DbM is effectively applied for the three case study components. The accuracy of the implementations is dependant on the relationships modelled by the PF and GP, and on the type and quantity of data available. This novel maintenance process can improve equipment performance and reduce energy wastage from BSCs operation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract not available

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract not available

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A variety of interacting complex phenomena takes place during the casting of metallic components. Here molten metal is poured into a mould cavity where it flows, cools, solidifies and then deforms in its solid state. As the metal cools, thermal gradients will promote thermal convection which will redistribute the heat around the component (usually from feeders or risers) towards the solidification front and mushy zone. Also, as the evolving solid regions of the cast component deform they will form gap at the cast-mould interface. This gap may change the rate of solidification in certain parts the casting, hence affecting the manner in which the cast component solidifies. Interaction between a cast component and its surrounding mould will also govern stress magnitudes in both the cast and mould -these may lead to defects such as cracks. This paper presents a multiphysics modelling approach to this complex process. Emphasis will be placed on the interacting phenomena taking place during the process and the modelling strategy used. Comparisons with plant data are also be given.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Water removal in paper manufacturing is an energy-intensive process. The dewatering process generally consists of four stages of which the first three stages include mechanical water removal through gravity filtration, vacuum dewatering and wet pressing. In the fourth stage, water is removed thermally, which is the most expensive stage in terms of energy use. In order to analyse water removal during a vacuum dewatering process, a numerical model was created by using a Level-Set method. Various different 2D structures of the paper model were created in MATLAB code with randomly positioned circular fibres with identical orientation. The model considers the influence of the forming fabric which supports the paper sheet during the dewatering process, by using volume forces to represent flow resistance in the momentum equation. The models were used to estimate the dry content of the porous structure for various dwell times. The relation between dry content and dwell time was compared to laboratory data for paper sheets with basis weights of 20 and 50 g/m2 exposed to vacuum levels between 20 kPa and 60 kPa. The comparison showed reasonable results for dewatering and air flow rates. The random positioning of the fibres influences the dewatering rate slightly. In order to achieve more accurate comparisons, the random orientation of the fibres needs to be considered, as well as the deformation and displacement of the fibres during the dewatering process.