924 resultados para Prior Probability
Resumo:
These findings strongly suggest that CFPE do not generally result from increased bacterial density within the airways. Instead, data presented here are consistent with alternative models of pulmonary exacerbation.
Resumo:
Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system, which necessitates driving magnetospheric models with the outputs from solar wind models. This presents a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which can be captured by solar wind models, and small-scale solar wind “noise,” which is far below typical solar wind model resolution and results primarily from stochastic processes. Following similar approaches in terrestrial climate modeling, we propose statistical “downscaling” of solar wind model results prior to their use as input to a magnetospheric model. As magnetospheric response can be highly nonlinear, this is preferable to downscaling the results of magnetospheric modeling. To demonstrate the benefit of this approach, we first approximate solar wind model output by smoothing solar wind observations with an 8 h filter, then add small-scale structure back in through the addition of random noise with the observed spectral characteristics. Here we use a very simple parameterization of noise based upon the observed probability distribution functions of solar wind parameters, but more sophisticated methods will be developed in the future. An ensemble of results from the simple downscaling scheme are tested using a model-independent method and shown to add value to the magnetospheric forecast, both improving the best estimate and quantifying the uncertainty. We suggest a number of features desirable in an operational solar wind downscaling scheme.
Resumo:
We discuss the characteristics of magnetosheath plasma precipitation in the “cusp” ionosphere for when the reconnection at the dayside magnetopause takes place only in a series of pulses. It is shown that even in this special case, the low-altitude cusp precipitation is continuous, unless the intervals between the pulses are longer than observed intervals between magnetopause flux transfer event (FTE) signatures. We use FTE observation statistics to predict, for this case of entirely pulsed reconnection, the occurrence frequency, the distribution of latitudinal widths, and the number of ion dispersion steps of the cusp precipitation for a variety of locations of the reconnection site and a range of values of the local de-Hoffman Teller velocity. It is found that the cusp occurrence frequency is comparable with observed values for virtually all possible locations of the reconnection site. The distribution of cusp width is also comparable with observations and is shown to be largely dependent on the distribution of the mean reconnection rate, but pulsing the reconnection does very slightly increase the width of that distribution compared with the steady state case. We conclude that neither cusp occurrence probability nor width can be used to evaluate the relative occurrence of reconnection behaviors that are entirely pulsed, pulsed but continuous and quasi-steady. We show that the best test of the relative frequency of these three types of reconnection is to survey the distribution of steps in the cusp ion dispersion characteristics.
Resumo:
There is an on-going debate on the environmental effects of genetically modified crops to which this paper aims to contribute. First, data on environmental impacts of genetically modified (GM) and conventional crops are collected from peer-reviewed journals, and secondly an analysis is conducted in order to examine which crop type is less harmful for the environment. Published data on environmental impacts are measured using an array of indicators, and their analysis requires their normalisation and aggregation. Taking advantage of composite indicators literature, this paper builds composite indicators to measure the impact of GM and conventional crops in three dimensions: (1) non-target key species richness, (2) pesticide use, and (3) aggregated environmental impact. The comparison between the three composite indicators for both crop types allows us to establish not only a ranking to elucidate which crop is more convenient for the environment but the probability that one crop type outperforms the other from an environmental perspective. Results show that GM crops tend to cause lower environmental impacts than conventional crops for the analysed indicators.
Resumo:
While state-of-the-art models of Earth's climate system have improved tremendously over the last 20 years, nontrivial structural flaws still hinder their ability to forecast the decadal dynamics of the Earth system realistically. Contrasting the skill of these models not only with each other but also with empirical models can reveal the space and time scales on which simulation models exploit their physical basis effectively and quantify their ability to add information to operational forecasts. The skill of decadal probabilistic hindcasts for annual global-mean and regional-mean temperatures from the EU Ensemble-Based Predictions of Climate Changes and Their Impacts (ENSEMBLES) project is contrasted with several empirical models. Both the ENSEMBLES models and a “dynamic climatology” empirical model show probabilistic skill above that of a static climatology for global-mean temperature. The dynamic climatology model, however, often outperforms the ENSEMBLES models. The fact that empirical models display skill similar to that of today's state-of-the-art simulation models suggests that empirical forecasts can improve decadal forecasts for climate services, just as in weather, medium-range, and seasonal forecasting. It is suggested that the direct comparison of simulation models with empirical models becomes a regular component of large model forecast evaluations. Doing so would clarify the extent to which state-of-the-art simulation models provide information beyond that available from simpler empirical models and clarify current limitations in using simulation forecasting for decision support. Ultimately, the skill of simulation models based on physical principles is expected to surpass that of empirical models in a changing climate; their direct comparison provides information on progress toward that goal, which is not available in model–model intercomparisons.
Resumo:
A new class of parameter estimation algorithms is introduced for Gaussian process regression (GPR) models. It is shown that the integration of the GPR model with probability distance measures of (i) the integrated square error and (ii) Kullback–Leibler (K–L) divergence are analytically tractable. An efficient coordinate descent algorithm is proposed to iteratively estimate the kernel width using golden section search which includes a fast gradient descent algorithm as an inner loop to estimate the noise variance. Numerical examples are included to demonstrate the effectiveness of the new identification approaches.
Resumo:
We report between-subject results on the effect of monetary stakes on risk attitudes. While we find the typical risk seeking for small probabilities, risk seeking is reduced under high stakes. This suggests that utility is not consistently concave.
Resumo:
A truly variance-minimizing filter is introduced and its per for mance is demonstrated with the Korteweg– DeV ries (KdV) equation and with a multilayer quasigeostrophic model of the ocean area around South Africa. It is recalled that Kalman-like filters are not variance minimizing for nonlinear model dynamics and that four - dimensional variational data assimilation (4DV AR)-like methods relying on per fect model dynamics have dif- ficulty with providing error estimates. The new method does not have these drawbacks. In fact, it combines advantages from both methods in that it does provide error estimates while automatically having balanced states after analysis, without extra computations. It is based on ensemble or Monte Carlo integrations to simulate the probability density of the model evolution. When obser vations are available, the so-called importance resampling algorithm is applied. From Bayes’ s theorem it follows that each ensemble member receives a new weight dependent on its ‘ ‘distance’ ’ t o the obser vations. Because the weights are strongly var ying, a resampling of the ensemble is necessar y. This resampling is done such that members with high weights are duplicated according to their weights, while low-weight members are largely ignored. In passing, it is noted that data assimilation is not an inverse problem by nature, although it can be for mulated that way . Also, it is shown that the posterior variance can be larger than the prior if the usual Gaussian framework is set aside. However , i n the examples presented here, the entropy of the probability densities is decreasing. The application to the ocean area around South Africa, gover ned by strongly nonlinear dynamics, shows that the method is working satisfactorily . The strong and weak points of the method are discussed and possible improvements are proposed.
An LDA and probability-based classifier for the diagnosis of Alzheimer's Disease from structural MRI
Resumo:
In this paper a custom classification algorithm based on linear discriminant analysis and probability-based weights is implemented and applied to the hippocampus measurements of structural magnetic resonance images from healthy subjects and Alzheimer’s Disease sufferers; and then attempts to diagnose them as accurately as possible. The classifier works by classifying each measurement of a hippocampal volume as healthy controlsized or Alzheimer’s Disease-sized, these new features are then weighted and used to classify the subject as a healthy control or suffering from Alzheimer’s Disease. The preliminary results obtained reach an accuracy of 85.8% and this is a similar accuracy to state-of-the-art methods such as a Naive Bayes classifier and a Support Vector Machine. An advantage of the method proposed in this paper over the aforementioned state of the art classifiers is the descriptive ability of the classifications it produces. The descriptive model can be of great help to aid a doctor in the diagnosis of Alzheimer’s Disease, or even further the understand of how Alzheimer’s Disease affects the hippocampus.
Resumo:
Iso-score curves graph (iSCG) and mathematical relationships between Scoring Parameters (SP) and Forecasting Parameters (FP) can be used in Economic Scoring Formulas (ESF) used in tendering to distribute the score among bidders in the economic part of a proposal. Each contracting authority must set an ESF when publishing tender specifications and the strategy of each bidder will differ depending on the ESF selected and the weight of the overall proposal scoring. The various mathematical relationships and density distributions that describe the main SPs and FPs, and the representation of tendering data by means of iSCGs, enable the generation of two new types of graphs that can be very useful for bidders who want to be more competitive: the scoring and position probability graphs.
Resumo:
Anticipating the number and identity of bidders has significant influence in many theoretical results of the auction itself and bidders' bidding behaviour. This is because when a bidder knows in advance which specific bidders are likely competitors, this knowledge gives a company a head start when setting the bid price. However, despite these competitive implications, most previous studies have focused almost entirely on forecasting the number of bidders and only a few authors have dealt with the identity dimension qualitatively. Using a case study with immediate real-life applications, this paper develops a method for estimating every potential bidder's probability of participating in a future auction as a function of the tender economic size removing the bias caused by the contract size opportunities distribution. This way, a bidder or auctioner will be able to estimate the likelihood of a specific group of key, previously identified bidders in a future tender.
Resumo:
The impact of the Tibetan Plateau uplift on the Asian monsoons and inland arid climates is an important but also controversial question in studies of paleoenvironmental change during the Cenozoic. In order to achieve a good understanding of the background for the formation of the Asian monsoons and arid environments, it is necessary to know the characteristics of the distribution of monsoon regions and arid zones in Asia before the plateau uplift. In this study, we discuss in detail the patterns of distribution of the Asian monsoon and arid regions before the plateau uplift on the basis of modeling results without topography from a global coupled atmosphere–ocean general circulation model, compare our results with previous simulation studies and available biogeological data, and review the uncertainties in the current knowledge. Based on what we know at the moment, tropical monsoon climates existed south of 20°N in South and Southeast Asia before the plateau uplift, while the East Asian monsoon was entirely absent in the extratropics. These tropical monsoons mainly resulted from the seasonal shifts of the Inter-Tropical Convergence Zone. There may have been a quasi-monsoon region in central-southern Siberia. Most of the arid regions in the Asian continent were limited to the latitudes of 20–40°N, corresponding to the range of the subtropical high pressure year-around. In the meantime, the present-day arid regions located in the relatively high latitudes in Central Asia were most likely absent before the plateau uplift. The main results from the above modeling analyses are qualitatively consistent with the available biogeological data. These results highlight the importance of the uplift of the Tibetan Plateau in the Cenozoic evolution of the Asian climate pattern of dry–wet conditions. Future studies should be focused on effects of the changes in land–sea distribution and atmospheric CO2 concentrations before and after the plateau uplift, and also on cross-comparisons between numerical simulations and geological evidence, so that a comprehensive understanding of the evolution of the Cenozoic paleoenvironments in Asia can be achieved.
Resumo:
In this paper, we consider the problem of estimating the number of times an air quality standard is exceeded in a given period of time. A non-homogeneous Poisson model is proposed to analyse this issue. The rate at which the Poisson events occur is given by a rate function lambda(t), t >= 0. This rate function also depends on some parameters that need to be estimated. Two forms of lambda(t), t >= 0 are considered. One of them is of the Weibull form and the other is of the exponentiated-Weibull form. The parameters estimation is made using a Bayesian formulation based on the Gibbs sampling algorithm. The assignation of the prior distributions for the parameters is made in two stages. In the first stage, non-informative prior distributions are considered. Using the information provided by the first stage, more informative prior distributions are used in the second one. The theoretical development is applied to data provided by the monitoring network of Mexico City. The rate function that best fit the data varies according to the region of the city and/or threshold that is considered. In some cases the best fit is the Weibull form and in other cases the best option is the exponentiated-Weibull. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
P>In the context of either Bayesian or classical sensitivity analyses of over-parametrized models for incomplete categorical data, it is well known that prior-dependence on posterior inferences of nonidentifiable parameters or that too parsimonious over-parametrized models may lead to erroneous conclusions. Nevertheless, some authors either pay no attention to which parameters are nonidentifiable or do not appropriately account for possible prior-dependence. We review the literature on this topic and consider simple examples to emphasize that in both inferential frameworks, the subjective components can influence results in nontrivial ways, irrespectively of the sample size. Specifically, we show that prior distributions commonly regarded as slightly informative or noninformative may actually be too informative for nonidentifiable parameters, and that the choice of over-parametrized models may drastically impact the results, suggesting that a careful examination of their effects should be considered before drawing conclusions.Resume Que ce soit dans un cadre Bayesien ou classique, il est bien connu que la surparametrisation, dans les modeles pour donnees categorielles incompletes, peut conduire a des conclusions erronees. Cependant, certains auteurs persistent a negliger les problemes lies a la presence de parametres non identifies. Nous passons en revue la litterature dans ce domaine, et considerons quelques exemples surparametres simples dans lesquels les elements subjectifs influencent de facon non negligeable les resultats, independamment de la taille des echantillons. Plus precisement, nous montrons comment des a priori consideres comme peu ou non-informatifs peuvent se reveler extremement informatifs en ce qui concerne les parametres non identifies, et que le recours a des modeles surparametres peut avoir sur les conclusions finales un impact considerable. Ceci suggere un examen tres attentif de l`impact potentiel des a priori.